Skip to main content
Log in

Performance Analysis of Composite Fading Channel Based on Point Estimate Method

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A simple procedure is outlined to provide a point estimate mixture gamma distribution (PEMG) which closely approximates intractable distribution characterizing composite fading channel. The efficacy of the proposed PEMG to match target channel model in relation to other available approximate distributions is demonstrated using Kullback–Leibler measure of divergence. The simplicity and accuracy of the PEMG facilitates the computation of analytical expressions for some of the widely used performance measures viz., average symbol error rate and channel capacity under different adaptive transmission schemes. Numerical computations in relation to exact results are carried out to validate the accuracy of the derived expressions over the realistic range of parameters for the channel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suzuki, H. (1977). A statistical model for urban radio propogation. IEEE Transactions on Communications, 25(7), 673–680.

    Article  Google Scholar 

  2. Hansen, F., & Meno, F. I. (1997). Mobile fading-Rayleigh and lognormal superimposed. IEEE Transactions on Vehicular Technology, 26(4), 332–335.

    Article  Google Scholar 

  3. Simon, M. K., & Alouni, M. S. (2000). Digital communication over fading channels : A unified approach to performance analysis. New York: Wiley.

    Book  Google Scholar 

  4. Loo, C. (1985). A statistical model for a land mobile satellite link. IEEE Transactions on Vehicular Technology, 34, 122–127.

    Article  Google Scholar 

  5. Abdi, A., Lau, W. C., Alouini, M. S., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: First- and second-order statistics. IEEE Transactions on Wireless Communication, 2, 519–528.

    Article  Google Scholar 

  6. Abdi, A., & Kaveh, M. (1998). K distribution: An appropriate substitute for Rayleigh-lognormal distribution in fading shadowing wireless channels. Electronics Letters, 34(9), 851–852.

    Article  Google Scholar 

  7. Karmeshu, & Agarwal, R. (2007). On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels. Wireless Communications and Mobile Computing, 7(1), 1–7.

    Article  Google Scholar 

  8. Laourine, A., Alouini, M. S., Affes, S., & Stphenne, A. (2009). On the performance analysis of composite multipath/shadowing channels using the G-distribution. IEEE Transactions on Communications, 57(4), 1162–1170.

    Article  Google Scholar 

  9. Bithas, P. S. (2009). Weibull–gamma composite distribution: Alternative multipath/shadowing fading model. IEEE Electronics Letters, 45(14), 749–751.

    Article  Google Scholar 

  10. Al-Ahmadi, S., & Yanikomeroglu, H. (2010). On the approximation of the generalized-K distribution by a gamma distribution for modeling composite fading channels. IEEE Transactions on Wireless Communications, 9(2), 706–71.

    Article  Google Scholar 

  11. Atapattu, S., & Tellambura, C. (2011). A mixture gamma distribution to model the SNR of wireless channels. IEEE Transactions on Wireless Communications, 10(12), 4193–4203.

    Article  Google Scholar 

  12. Abdi, A., & Kaveh, M. (2000). Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distribution. IEEE Communications Letters, 4(4), 122–124.

    Article  Google Scholar 

  13. Bithas, P. S., Sagias, N. C., Mathiopoulos, P. T., Karagiannidis, G. K., & Rontogiannis, A. A. (2006). On the performance analysis of digital communications over generalized-K fading channels. IEEE Communications Letters, 5(10), 353–355.

    Article  Google Scholar 

  14. Laourine, A., Alouini, M. S., Affes, S., & Stphenne, A. (2008). On the capacity of generalized-K fading channels. IEEE Transactions on Wireless Communications, 4(11), 2441–2445.

    Article  Google Scholar 

  15. Bithas, P. S., Sagias, N. C., Mathiopoulos, P. T., & Kotsopoulos, S. A. (2007). Diversity reception over generalized-K (KG) fading channels. IEEE Transactions on Wireless Communications, 6(12), 4238–4243.

    Article  Google Scholar 

  16. Efthymoglou, G. P., Ermolova, N. Y., & Aalo, V. A. (2010). Channel capacity and average error rates in generalised-K fading channels. IET Communications, 4(11), 1364–1372.

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, J., & Nowak, A. S. (1998). Integration formulas to evaluate functions of random variables. Journal of Structural Safety, Elsevier, 5, 267–284.

    Article  Google Scholar 

  18. Zhao, Y. G., & Ono, T. (2000). New point estimates for probability moments. Journal of Engineering Mechanics, 126(4), 433–436.

    Article  Google Scholar 

  19. Shankar, P. M. (2011). Fading and shadowing in wireless systems. New York: Springer.

    Google Scholar 

  20. Rosenblueth, E. (1975). Point estimates for probability moments. Proceedings of the National Academy of Sciences USA, 72(10), 3812–3814.

    Article  MathSciNet  MATH  Google Scholar 

  21. Adebola, E., Olabiyi, O., & Annamalai, A. (2013). On the Dirac delta approximation and the MGF method for ASER analyses of digital communications over fading channel. IEEE Communications Letters, 17(2), 245–248.

    Article  Google Scholar 

  22. Goldsmith, A. (2006). Wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  23. Olabiyi, O., & Annamalai, A. (2012). Invertible exponential-type approximations for the Gaussian probability integral Q(x) with applications. IEEE Wireless Communications Letters, 1(5), 544–547.

    Article  Google Scholar 

  24. Goldsmith, A., & Varaiya, P. (1997). Capacity of fading channels with channel side information. IEEE Transaction on Information Theory, 43(6), 1986–1992.

    Article  MathSciNet  MATH  Google Scholar 

  25. Alouni, M. S., & Goldsmith, A. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  26. Wolfram. The Wolfram functions site. http://functions.wolfram.com.

Download references

Acknowledgments

The authors would like to thank the reviewers for useful comments which have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmeshu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, V., Karmeshu Performance Analysis of Composite Fading Channel Based on Point Estimate Method. Wireless Pers Commun 79, 953–968 (2014). https://doi.org/10.1007/s11277-014-1897-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1897-6

Keywords

Navigation