Skip to main content

Advertisement

Log in

A Novel Evolutionary-Based Cooperative Spectrum Sensing Mechanism for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) is considered as a feasible intelligent technology for 4G wireless networks or self-organization networks and envisioned as a promising paradigm of exploiting intelligence for enhancing efficiency of underutilized spectrum bands. In CR, one of the main concerns is to reliably sense the presence of primary users, to attain protection against harmful interference caused by the potential spectrum access of secondary users (SUs). In this paper, evolutionary algorithms, namely, genetic algorithm (GA) and particle swarm optimization (PSO) are investigated. An imperialistic competitive algorithm (ICA) is proposed to minimize error detection at the common soft data fusion (SDF) center for structurally centralized cognitive radio network (CRN). By using these techniques, evolutionary operations are invoked to optimize the weighting coefficients applied on the sensing measurement components received from multiple cooperative SUs. The proposed method is compared with other evolutionary algorithms, as well as other conventional deterministic, such as maximal ratio combining- (MRC-), modified deflection coefficient- (MDC-), normal deflection coefficient- (NDC-) based SDF schemes and OR-rule HDF based. MATLAB simulations confirm the superiority of the ICA-based scheme over the PSO-, GA-based and other conventional schemes in terms of detection performance. In addition, the ICA-based scheme also shows promising convergence and time running performance as compared to other iterative-based schemes. This makes ICA an adequate solution to meet real-time requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Federal Communications Commission. (Nov. 2002.) Spectrum policy task force report, FCC 02–155. doi:10.1109/DYSPAN.2007.88.

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220. doi:10.1109/JSAC.2004.839380.

    Article  Google Scholar 

  3. Ghasemi, A. & Sousa, E. S. (Nov. 2005). Collaborative spectrum sensing for opportunistic access in fading environments. In The first IEEE international symposium on dynamic spectrum access networks (DySPAN) (pp. 131–136). doi:10.1109/DYSPAN.2005.1542627.

  4. Ganesan, G. & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio, Part I: Two user networks. IEEE Transaction on Wireless Communications, 6(6). doi:10.1109/TWC.2007.05775.

  5. Qi, C., Wang, J., & Li, S. (Jan. 2009). Weighted-clustering cooperative spectrum sensing In cognitive radio context. International Conference on Communications and Mobile Computing (CMC), 1, 102–106. doi:10.1109/CMC.2009.303.

  6. Digham, F. F., Alouini, M. S., & Simon Marvin, K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24. doi:10.1109/TAES.1986.310699.

    Article  Google Scholar 

  7. Akyildiz, L. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication Journal, 4, 40–62. doi:10.1016/j.phycom.2010.12.003.

    Article  Google Scholar 

  8. Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transaction on Wireless Communications, 7(4), 1326–1337. doi:10.1109/TWC.2008.060869.

    Article  Google Scholar 

  9. Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40. doi:10.1109/JSTSP.2007.914882.

    Article  Google Scholar 

  10. Ma, J., Zhao, G., & Li, Y. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), part: 2, 4502–4507. doi:10.1109/GLOCOM.2007.594.

  11. El-Saleh, A. A., Ismail, M., Ali, M. A. M., & Arka, I. H. (2011). Hybrid SDF-HDF cluster-based fusion scheme for cooperative spectrum sensing in cognitive radio networks. KSII Transactions on Internet and Information Systems, 3(2). doi:10.1109/APCC.2011.6152834.

  12. Kay, S. M. (1998). Fundamentals of statistical signal processing, Volume II: Detection theory. Upper Saddle River (New Jersey), 7, doi:10.1098/rsta.1933.0009.

  13. Akbari, M., Manesh, M. R., El-Saleh, A. A., & Ismail, M. (2012). Improved soft fusion-based cooperative spectrum sensing using particle swarmoptimization. IECE Electronics Express, 9(6), 436–442. doi:10.1587/elex.9.436.

  14. Shen, B., & Kwak, K. S. (2009). Soft combination schemes for cooperative spectrum sensing in cognitive radio networks. ETRI Journal, 31(3). doi:10.1109/NRSC.2011.5873630.

  15. A-Gargari, E., & Lucas, C. Designing an optimal PID controller using Colonial Competitive Algorithm. doi:10.1109/CEC.2007.4425083.

  16. Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Rezaie, K., & Atashpaz-Gargari, E. (2010). Solving the integrated product mix-outsourcing problem using the imperialist competitive algorithm. Expert System Applications, 37(12), 7615–7626. doi:10.1016/j.eswa.2010.04.081.

    Article  Google Scholar 

  17. Niknam, T., Taherian Fard, E., Pourjafarian, N., & Rousta, A. (2011). An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering. Engineering Applications of Artificial Intelligence, 24(2), 3–306. doi:10.1016/j.engappai.2010.10.001.

    Article  Google Scholar 

  18. Kalyanmoy, D. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186, 311–338. doi:10.1934/elsevier.2001.10012.

    Article  MATH  Google Scholar 

  19. Kaveh, A., & Talatahari, S. (2010). Optimum design of skeletal structures using imperialist competitive algorithmOptimum design of skeletal structures using imperialist. Competitive Algorithm, 88(21–22), 1220–1229. doi:10.1016/j.compstruc.2010.06.011.

    Google Scholar 

  20. Hossain, E., & Bhargava, V. K. (2007). Cognitive wireless communication networks. Berlin: Springer.

  21. Shen, B., Ullah, S., & Kwak, K. (2010). Deflection coefficient maximization criterion based optimal cooperative spectrum sensing. AEU-International Journal of Electronics and Communications, 64(9), 819–827. doi:10.1016/j.aeue.2009.06.006.

    Article  Google Scholar 

  22. Zheng, S., Lou, C., & Yang, X. Cooperative spectrum sensing using particle swarm optimisation. Electronics Letters 46(22). doi:10.1049/el.2010.2115.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghanbarisabagh.

Appendices

Appendix 1

$$\begin{aligned}&\displaystyle U_{i} \left[ {n|{\text {H}}_{0} } \right] = \sqrt{P_{{R,i}} } h_{i} W_{i} \left[ n \right] + N_{i} \left[ n \right] \end{aligned}$$
(9)
$$\begin{aligned}&\displaystyle U_{i} \left[ {n|{\text {H}}_{1} } \right] = \sqrt{P_{{R,i}} } h_{i} W_{i} \left[ n \right] + N_{i} \left[ n \right] \!+\! \sqrt{P_{{R,i}} } g_{i} h_{i} {\text {S}}\left[ {\text {n}} \right] \!=\! \sqrt{P_{{R,i}} } g_{i} h_{i} {\text {S}}\left[ {\text {n}} \right] \!+\! U_{i} \left[ {n|{\text {H}}_{0} } \right] \qquad \nonumber \\ \end{aligned}$$
(10)

This statistically shows i.e.

$$\begin{aligned} U_{i} \left[ {n|{\text {H}}_{0} } \right] \sim {\mathcal {N}}\left( {0,\sigma _{{1_{i} }}^{2} } \right) \sim {\mathcal {N}}\left( {0, P_{{R,i}} \left| {h_{i} } \right| ^{2} \sigma _{{W_{i} }}^{2} + {{\updelta }}_{{\text {i}}}^{2} } \right) \end{aligned}$$

and

$$\begin{aligned} U_{i} \left[ {n|{\text {H}}_{1} } \right] \sim {\mathcal {N}}\left( {0,\sigma _{{1_{i} }}^{2} } \right) \sim {\mathcal {N}}\left( {0, P_{{R,i}} \left| {g_{i} } \right| ^{2} \left| {h_{i} } \right| ^{2} \sigma _{S}^{2} + \sigma _{0}^{2} } \right) . \end{aligned}$$

In a Matrix form, the received signals at the FC through the control channel under \({\text {H}}_{0}\) and \({\text {H}}_{1}\), respectively, can be written as:

$$\begin{aligned} U_{i} \left[ {n|H_{0} } \right]&= \left[ \begin{array}{cccc} {\sqrt{P_{{R,1}} } h_{1} } &{}0&{}\cdots \cdots &{}0\\ 0&{}\sqrt{P_{{R,2}} } h_{2}&{} \cdots \cdots &{}0 \\ \vdots &{} \vdots &{}\ddots &{}\vdots \\ 0 &{} 0 &{}\cdots \cdots &{} {\sqrt{P_{{R,M}} } h_{M} } \end{array} \right] \nonumber \\&\times \left[ \begin{array}{c} {W_{1} \left[ n \right] } \\ \vdots \\ {W_{M} \left[ n \right] } \\ \end{array} \right] + \left[ \begin{array}{c} N_{1} \left[ n \right] \\ \vdots \\ N_{M} \left[ n \right] \\ \end{array}\right] \end{aligned}$$
(11)
$$\begin{aligned} U_{i} \left[ {n|H_{1} } \right]&= \left[ \begin{array}{cccc} \sqrt{P_{{R,1}} } g_{1} h_{1} &{} 0&{}\cdots \cdots &{}0\\ 0&{}\sqrt{P_{{R,2}} } g_{2} h_{2}&{}\cdots \cdots &{}0\\ \vdots &{} \vdots &{}\ddots &{}\vdots \\ 0&{}0 &{}\cdots \cdots &{} \sqrt{P_{{R,M}} } g_{M} h_{M} \end{array} \right] \nonumber \\&\times \left[ \begin{array}{c} S_{1} \left[ n \right] \\ \vdots \\ S_{M} \left[ n \right] \\ \end{array} \right] + \left[ \begin{array}{c} U_{1} \left[ {n|H_{0} } \right] \\ \vdots \\ U_{M} \left[ {n|H_{0} } \right] \end{array}\right] \end{aligned}$$
(12)

Appendix 2

$$\begin{aligned} E\left( {Z{\text {|}}H_{0} } \right)&= \sum \limits _{{i = 1}}^{M} \omega _{i} K\sigma _{{0,i}}^{2} \,\, = \,\sum \limits _{{i = 1}}^{M} \omega _{i} \mu _{{0,i}} \, = \,\vec {\omega }^{T} \overrightarrow{{\mu _{0} }}\end{aligned}$$
(13)
$$\begin{aligned} E\left( {Z{\text {|}}H_{1} } \right)&= \sum \limits _{{i = 1}}^{M} \omega _{i} K\sigma _{{1,i}}^{2} = \sum \limits _{{i = 1}}^{M} \omega _{i} \mu _{{1,i}} \, = \,\vec {\omega }^{T}\end{aligned}$$
(14)
$$\begin{aligned} var\left( {Z{\text {|}}H_{0} } \right)&= \sum \limits _{{i = 1}}^{M} 2\omega _{i} ^{2} K(\sigma _{{0,i}}^{2} + \delta _{i}^{2} )^{2} = ~\vec {\omega }^{T} \varPhi _{{H_{0} }} \vec {\omega }\end{aligned}$$
(15)
$$\begin{aligned} var\left( {Z{\text {|}}H_{1} } \right)&= \sum \limits _{{i = 1}}^{M} 2\omega _{i} ^{2} K(\sigma _{{1,i}}^{2} + \sigma _{{0,i}}^{2} )^{2} = ~\vec {\omega }^{T} \varPhi _{{H_{1} }} \vec {\omega } \end{aligned}$$
(16)

where \({\vec {\upomega }} = \left[ {{{\upomega }}_{1} ,{{\upomega }}_{2} , \ldots ,{{\upomega }}_{{\text {M}}} } \right] ^{{\text {T}}}\) marks the weighting vectors and the superscript \(T\) denotes the transpose of the weighting coefficients vector. The covariance matrices under \({\text {H}}_{1}\) and \({\text {H}}_{0}\) are

$$\begin{aligned} \varPhi _{{H_{1} }} = diag\left( {2K\left( {P_{{R,i}} \left| {g_{i} } \right| ^{2} \left| {h_{i} } \right| ^{2} \sigma _{s}^{2} + \sigma _{{0,i}}^{2} } \right) ^{2} } \right) \end{aligned}$$

and \( \varPhi _{{H_{0} }} = diag\left( {2K\sigma _{{0,i}}^{4} } \right) \), where square diagonal matrix is \(diag(.)\) and given vector elements are diagonal elements.\(\beta \) is assumed to be energy global threshold at FC then, \( Z{ \gtrless }_{{~H_{0} }}^{{~H_{1} }} \beta \) presents the likelihood ratio.

$$\begin{aligned} P_{f} = P\left( {Z > \beta {\text {|}} H_{0} } \right)&= Q\left( {\frac{{\beta - E\left( {Z{\text {|}}H_{0} } \right) }}{{\sqrt{var\left( {Z{\text {|}}H_{0} } \right) } }}} \right) = Q\left( {\frac{{\beta - \vec {\omega }^{T} \overrightarrow{{\mu _{0} }} }}{{\sqrt{\vec {\omega }^{T} \varPhi _{{H_{0} }} \vec {\omega }} }}} \right) \end{aligned}$$
(17)
$$\begin{aligned} P_{d} = P\left( {Z > \beta {\text {|}} H_{1} } \right)&= Q\left( {\frac{{\beta - E\left( {Z{\text {|}}H_{1} } \right) }}{{\sqrt{var\left( {Z{\text {|}}H_{1} } \right) } }}} \right) = Q\left( {\frac{{\beta - \vec {\omega }^{T} \overrightarrow{{\mu _{1} }} }}{{\sqrt{\vec {\omega }^{T} \varPhi _{{H_{1} }} \vec {\omega }} }}} \right) \end{aligned}$$
(18)

Since \(P_{f} = P_{m} \) or \( P_{f} = (1 - P_{d} )\), by equating the expression in Eqs. (17) and (18), we would obtain:

$$\begin{aligned} Q\left( {\frac{{\beta - \vec {\omega }^{T} \overrightarrow{{\mu _{1} }} }}{{\sqrt{\vec {\omega }^{T} \varPhi _{{H_{1} }} \vec {\omega }} }}} \right)&= 1 - Q\left( {\frac{{\beta - \vec {\omega }^{T} \overrightarrow{{\mu _{0} }} }}{{\sqrt{\vec {\omega }^{T} \varPhi _{{H_{0} }} \vec {\omega }} }}} \right) \end{aligned}$$
(19)
$$\begin{aligned} Q\left( {\frac{{\beta - \vec {\omega }^{T} \overrightarrow{{\mu _{1} }} }}{{\sqrt{\vec {\omega }^{T} \varPhi _{{H_{1} }} \vec {\omega }} }}} \right)&= Q\left( {\frac{{\vec {\omega }^{T} \overrightarrow{{\mu _{0} }} - \beta }}{{\sqrt{\vec {\omega }^{T} \varPhi _{{H_{0} }} \vec {\omega }} }}} \right) \end{aligned}$$
(20)

After some simplifications, we can obtain the optimal threshold \(\beta \) that will minimize the total probability of error

$$\begin{aligned} \beta = \left( {\frac{{\sqrt{\omega ^{T} \varPhi _{{H_{1} }} \omega } \mu _{0}^{T} \vec {\omega } + \sqrt{\omega ^{T} \varPhi _{{H_{1} }} \omega } \mu _{1}^{T} \omega }}{{\sqrt{\omega ^{T} \varPhi _{{H_{0} }} \omega } + \sqrt{\omega ^{T} \varPhi _{{H_{1} }} \omega } }}} \right) \end{aligned}$$
(21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, M., Ghanbarisabagh, M. A Novel Evolutionary-Based Cooperative Spectrum Sensing Mechanism for Cognitive Radio Networks. Wireless Pers Commun 79, 1017–1030 (2014). https://doi.org/10.1007/s11277-014-1915-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1915-8

Keywords

Navigation