Skip to main content
Log in

Outage Analysis of LTE-A Femtocell Networks with Nakagami-\(m\) Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The concept of extending traditional macrocell cellular structure with small cells (like femtocells) in next-generation mobile networks (e. g., Long Term Evolution Advanced) provides a great opportunity to improve coverage and enhance data rate. Femtocells are cost efficient, indoor base stations. These femtocells can operate in closed mode i. e. only restricted users connection are allowed. Therefore, if the number of deployed femtocells is significant, that can dramatically modify the interference pattern of a macrocell. Thus mobile service providers have to pay attention for the number of simultaneously operating femtocells and encroach, if necessary, to provide appropriate service level to every mobile user. In this paper we provide an analytic framework to characterize the upper bound of service outage probability for a potential macrocell user in a two-tier mobile system, when the radio channels are infected by Nakagami-\(m\) fading. In our proposal the femtocells are operating in closed mode and deployed into a designated macrocell, hence every femtocell increases the interference level. The spatial location femtocells is modelled with Poisson cluster process. Compared to traditional grid structure or completely spatial random Poisson point process femtocell deployment, cluster based layout may provides more life realistic deployment scenario. To evaluate the upper bound of service outage we use the tools of stochastic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that, \(m=1\) yields Rayleigh fading. In this case \(h\) follows exponential distribution with rate 1.

  2. Note that the system is fully loaded, therefore \(\sigma ^{\mathbf{x},j}=1\) always.

References

  1. Small cell market status—Informa (2013). http://www.smallcellforum.org/resources-reports. Accessed November 13, 2013.

  2. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (release 11), 3GPP TS 36.300 V11.4.0 (2012). http://www.3gpp.org/ftp/Specs/html-info/36300.htm. Accessed November 13, 2013.

  3. Saeed, R. A., Chaudhari, B. S., & Mokhtar, R. A. (2012). Femtocell communications and technologies: Business opportunities and deployment challenges. Hershey: IGI Global.

    Book  Google Scholar 

  4. Nagata, S., Benjebbour, A., Kishiyama, Y., et al. (2013). Trends in small cell enhancements in LTE advanced. IEEE Communications Magazine, 51(2), 98–105.

    Article  Google Scholar 

  5. Kim, Y., Lee, S., & Hong, D. (2010). Performance analysis of two-tier femtocell networks with outage constraints. IEEE Transactions on Wireless Communications, 9(9), 2695–2700.

    Article  Google Scholar 

  6. Chen, C. S., Nguyen, V. M., & Thomas, L. (2012). On small cell network deployment: A comparative study of random and grid topologies. In IEEE vehicular technology conference (VTC Fall). doi:10.1109/VTCFall.6398953.

  7. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134.

    Article  Google Scholar 

  8. Dhillon, H. S., Ganti, R. K., Baccelli, F., & Andrews, J. G. (2011). Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560.

    Article  Google Scholar 

  9. Chen, J., & Wang, L.-C. (2013). Performance analysis of small cells using stochastic geometry approach in Nakagami fading channels. In IEEE/CIC international conference on communications in China (ICCC) (pp. 22–26), August 12–14, 2013.

  10. Chen, S., Jin, H., Li, Y., & Peng, M. (2013). Performance analysis of two-tier femtocell networks in Nakagami-m fading channels. In International conference on wireless communications and signal processing (WCSP) (pp. 1–5), October 24–26, 2013.

  11. Elkourdi, T., & Simeone, O. (2011). Femtocell as a relay: An outage analysis. IEEE Transactions on Wireless Communications, 10(12), 4204–4213.

    Article  Google Scholar 

  12. Ganti, R. K., & Haenggi, M. (2009). Interference and outage in clustered wireless ad hoc networks. IEEE Transactions on Information Theory. doi:10.1109/TIT.2009.2025543.

  13. Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. London: Wiley. ISBN:978-0-470-01491-2.

  14. Ramirez-Perez, F., & Serfling, R. (2001). Shot noise on cluster processes with cluster marks, and studies of long range dependence. Advances in Applied Probability, 33(3), 631–651.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cox, D. R., & Isham, V. (1980). Point processes. London: Chapman and Hall. ISBN:0-412-21910-7.

  16. Haenggi, M., & Ganti, R. K. (2008). Interference in large wireless networks. Foundations and Trends in Networking, 3(2), 127–248.

  17. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels. London: Wiley.

    Google Scholar 

  18. Erceg, V., & Hari, K. V. S., et al. (2001). Channel models for fixed wireless applications. Technical report, IEEE 802.16 Broadband Wireless Access Working Group. http://www.ieee802.org/16/tg3/contrib/802163c-01_29r4. Accessed October 9, 2013.

  19. Tresch, R., & Guillaud, M. (2010). Performance of interference alignment in clustered wireless ad hoc networks. In IEEE international symposium on information theory (ISIT 2010). doi:10.1109/ISIT.2010.5513243.

  20. Jeney, G. (2011). Practical limits of femtocells in a realistic environment. IEEE 73rd vehicular technology conference (VTC Spring). doi:10.1109/VETECS.2011.5956403.

Download references

Acknowledgments

The work reported in the paper has been developed in the framework of the “Intelligent cellular network: A Two-Tier Cellular Architecture with Robust Interference Capability and Optimal Resource Management” Singaporean–Hungarian project. This project is supported by the grant TÉT_10-1-2011-0266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Jakó.

Appendices

Appendix 1: Outage Probability for Non-group User in Case of Nakagami-\(m\)

It is known that in case of Nakagami-\(m\) fading the amplitude (\(x\)) given in (5) follows Nakagami distribution and the received power \(h_c=\frac{x^2}{\varOmega }\) follows Gamma distribution. It is assumed that \(\varOmega =1\). Therefore, firstly we transform the random variable as follows. The new random variable is \(y\) and we substitute

$$\begin{aligned} x=\sqrt{\frac{\varOmega T}{P^c g(\mathbf {z})}}\cdot \sqrt{y}\text {, hence }\frac{\text {d}x}{\text {d}y}=\frac{1}{2}\cdot \frac{\frac{\varOmega T}{P^c g(\mathbf {z})}}{\sqrt{\frac{\varOmega T y}{P^cg(\mathbf {z})}}}. \end{aligned}$$

Substituting this new random variable, the pdf modifies to:

$$\begin{aligned} f(y,m)=\frac{1}{\varGamma (m)}\left( \frac{Tm}{P^cg(\mathbf {z})} \right) ^m y^{m-1} \exp {\left( - \frac{mT}{P^cg(\mathbf {z})}\cdot y\right) }. \end{aligned}$$

Using the total probability law \({\mathsf {I}\!\mathsf {P}}\left\{ \text {coverage} \right\} (\mathbf{z}) \) can be describe in the following form,

$$\begin{aligned} {\mathsf {I}\!\mathsf {P}}\left\{ \text {coverage} \right\} (\mathbf{z})&= {\mathsf {I}\!\mathsf {P}}\left\{ \frac{P^c h_c g(\mathbf {z})}{I(\mathbf {z})}\ge T \right\} ={\mathsf {I}\!\mathsf {P}}\left\{ I(\mathbf {z})\le \frac{P^c h_c g(\mathbf {z})}{T} \right\} \nonumber \\&= \int \limits _{y=0}^\infty f(y,m)\cdot \text {Pr}\left\{ I(\mathbf {z})\le y \right\} \text {d}y. \end{aligned}$$
(22)

Integration by parts equation (22) yields,

$$\begin{aligned} {\mathsf {I}\!\mathsf {P}}\left\{ \text {coverage} \right\} (\mathbf{z})&= \left[ \left( 1-\frac{\varGamma \left( m,\frac{mT}{P^cg(\mathbf {z})}\cdot y \right) }{\varGamma (m)}\right) \cdot \text {Pr}\left\{ I(\mathbf {z})\le y \right\} \right] _{y=0}^\infty \\&\quad -\int \limits _{y=0}^\infty \left( 1-\frac{\varGamma \left( m,\frac{mT}{P^cg(\mathbf {z})}\cdot y \right) }{\varGamma (m)} \right) \cdot \text {d}\left\{ \text {Pr}\big \{I(\mathbf {z})\le y \big \} \right\} , \end{aligned}$$

where \(\varGamma \left( m,\frac{mT}{P^cg(\mathbf {z})}\cdot y \right) \) and \(\varGamma (m)\) are the incomplete “lower” and standard (complete) gamma function, respectively. Using the well-known properties of Gamma function that \(\varGamma (m,\infty )=0\) and in case of \(m\) is an integer \(\varGamma (m,0)=\varGamma (m)\) implies that:

$$\begin{aligned} {\mathsf {I}\!\mathsf {P}}\left\{ \text {coverage} \right\} (\mathbf{z}) =\int \limits _0^\infty \frac{\varGamma \left( m,\frac{mT}{P^cg(\mathbf {z})}\cdot y \right) }{\varGamma (m)}\text {d}\big \{\text {Pr}\left\{ I(\mathbf {z})\le y \right\} \big \}. \end{aligned}$$

Invoking the sum version of an incomplete gamma function:

$$\begin{aligned} \varGamma (s,x)=(s-1)! e^{-x} \sum _{k=0}^{s-1} \frac{x^k}{k!}~ \text {and}~ \varGamma (m)=(m-1)! ~\text { if} ~m ~\text {is integer}, \end{aligned}$$

provides the following form for coverage:

$$\begin{aligned} {\mathsf {I}\!\mathsf {P}}\left\{ \text {coverage} \right\} (\mathbf{z}) =\sum _{k=0}^{m-1}\frac{1}{k!}\int \limits _0^\infty \exp {\left( -\frac{Tm}{P^cg(\mathbf {z})}y\right) } \left( \frac{Tm}{P^cg(\mathbf {z})} y\right) ^k\text {d}\big \{\text {Pr}\left\{ I(\mathbf {z})\le y \right\} \big \}. \end{aligned}$$
(23)

The definition of Laplace transform and the \(k\)th order derivate is defined as follows,

$$\begin{aligned}&\displaystyle \fancyscript{L}_X(s) = \int \limits _0^\infty \exp {\left( -sx\right) }f_X(x) \text {d}x=\int \limits _0^\infty \exp {\left( -sx\right) }\text {d}\left\{ F_X(x)\right\} ,&\\&\displaystyle \frac{\text {d}^k}{\text {d} s^k}\fancyscript{L}_{X}(s)=(-1)^k\int \limits _0^\infty x^k\exp {\left( -sx\right) }\text {d}\left\{ F_X(x)\right\}&\end{aligned}$$

Finally, substituting the \(k\)th order derivate to the (23) concludes the proof:

$$\begin{aligned} {\mathsf {I}\!\mathsf {P}}\left\{ \text {coverage} \right\} (\mathbf{z}) = \sum _{k=0}^{m-1}\frac{(-1)^k}{k!}\left[ s^k \frac{\text {d}^k}{\text {d} s^k} \fancyscript{L}_{I(z)}(s) \right] \Bigg |_{s=\frac{Tm}{P^cg(\mathbf {z})}}. \end{aligned}$$
(24)

Appendix 2: Proof of Raw Moments

After calculating the fourth power of \(\mathbb {E}_\mathbf{y}\left\{ \Vert \mathbf {x} +\mathbf {y}-\mathbf {z}\Vert ^4 \right\} \) we can apply the expectation operator for the monomials of the calculated polynomial. According to the properties of Thomas cluster process \(\mathbf {y}\) follows normal distribution with zero mean and \(\delta ^2\) variance. Let us introduce the definition of the \(p\)th (plain) moment of a normal random variable:

$$\begin{aligned} \mathrm {E}\left\{ \mathbf {y}^p\right\} = {\left\{ \begin{array}{ll} 0 &{} \text {if }p\text { is odd,} \\ \delta ^p\,(p-1)!! &{} \text {if }p\text { is even.} \end{array}\right. } \end{aligned}$$

Therefore substituting the plain moments into the polynomial, we get: \(\mathbb {E}_\mathbf{y}\left\{ \Vert \mathbf {x}+\mathbf {y}-\mathbf {z}\Vert ^4 \right\} = 3\delta ^4+6\delta ^2\Vert \mathbf {x}-\mathbf {z}\Vert ^2+\Vert \mathbf {x}-\mathbf {z}\Vert ^4, \text {which is equals to} \left( \delta ^2 + \Vert \mathbf {x}-\mathbf {z}\Vert ^2\right) ^2+2\delta ^4+4\delta ^2\Vert \mathbf {x}-\mathbf {z}\Vert ^2\) and finishes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakó, Z., Jeney, G. Outage Analysis of LTE-A Femtocell Networks with Nakagami-\(m\) Channels. Wireless Pers Commun 79, 1369–1384 (2014). https://doi.org/10.1007/s11277-014-1934-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1934-5

Keywords

Navigation