Skip to main content
Log in

An Integration of Source and Jammer for a Decode-and-Forward Two-way Scheme Under Physical Layer Security

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze the integration of source and jammer for a decode-and-forward two-way scheme under physical layer security where the source nodes not only transmit data signals, but also transmit jamming signals to degrade the quality of eavesdropping links, and a selected relay forwards the combined data signals using an XOR operation. In this proposed protocol, the best relay is chosen by the maximum end-to-end achievable secrecy rate, and the secrecy system performance is evaluated by the exact and asymptotic secrecy outage probability over flat and block Rayleigh fading channels. The Monte-Carlo results are presented to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42, 74–80.

    Article  Google Scholar 

  2. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MATH  MathSciNet  Google Scholar 

  3. Krikidis, I., Thompson, J., Mclaughlin, S., & Goertz, N. (2008). Amplify-and-forward with partial relay selection. IEEE Communications Letters, 12, 235–237.

    Article  Google Scholar 

  4. Xia, M., & Aissa, S. (2012). Cooperative AF relaying in spectrum-sharing systems: Outage probability analysis under co-channel interferences and relay selection. IEEE Transactions on Communications, 60, 3252–3262.

    Article  MathSciNet  Google Scholar 

  5. Ikki, S. S., & Ahmed, M. H. (2010). Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection. IEEE Transaction on communications, 58, 68–72.

    Article  Google Scholar 

  6. Tourki, K., Yang, H.-C., & Alouini, M.-S. (2011). Accurate outage analysis of incremental decode-and-forward opportunistic relaying. IEEE Transactions on Wireless Communications, 10, 1021–1025.

    Article  Google Scholar 

  7. Ju, M. C., Kim, I.-M., & Kim, D. I. (2012). Joint relay selection and relay ordering for DF-based cooperative relay networks. IEEE Transaction on communications, 60, 908–915.

    Article  Google Scholar 

  8. Duy, T. T., & Kong, H.-Y. (2013). Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications, 69, 857–878.

    Article  Google Scholar 

  9. Li, Y., Louie, R. H. Y., & Vucetic, B. (2010). Relay selection with network coding in two-way relay channels. IEEE Transactions on Vehicular Technology, 59, 4489–4499.

  10. Chen, J., Song, L., Han, Z., & Jiao, B. (2011). Joint relay and jammer selection for secure decode-and-forward two-way relay communications. Global Telecommunications Conference GLOBECOM, 2011, 1–5.

    MATH  Google Scholar 

  11. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54, 1355–1367.

    Article  MATH  MathSciNet  Google Scholar 

  12. Leung-Yan-Cheong, S., & Hellman, M. E. (1978). The Gaussian wire-tap channel. IEEE Transaction on Information Theory, 24, 451–456.

    Article  MATH  MathSciNet  Google Scholar 

  13. Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24, 339–348.

    Article  MATH  MathSciNet  Google Scholar 

  14. Liang, Y., Poor, H. V., & Shamai (Shitz), S. (2008). Secure communication over fading channels. IEEE Transactions on Information Theory, 54, 2470–2492.

  15. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58, 1875–1888.

    Article  MathSciNet  Google Scholar 

  16. Ding, Z., Mai, X., Jianhua, L., & Liu, F. (2012). Improving wireless security for bidirectional communication scenarios. IEEE Transactions on Vehicular Technology, 61, 2842–2848.

    Article  Google Scholar 

  17. Wang, H.-M., Yin, Q., & Xia, X.-G. (2012). Distributed beamforming for physical-layer security of two-way relay networks. IEEE Transactions on Signal Processing, 60, 3532–3545.

    Article  MathSciNet  Google Scholar 

  18. Wang, H.-M., Yin, Q., & Xia, X.-G. (2011). Improving the physical-layer security of wireless two-way relaying via analog network coding. Global Telecommunications Conference GLOBECOM, 2011, 1–6.

    Google Scholar 

  19. Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4, 1787–1791.

    Article  Google Scholar 

  20. Sun, X., Xu, W., Jiang, M., & Zhao, C. (2012). Opportunistic selection for decode-and-forward cooperative networks with secure probabilistic constraints. Wireless Personal Communications, 70, 1633–1652.

    Article  Google Scholar 

  21. Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communication, 8, 5003–5011.

    Article  Google Scholar 

  22. Stanojev, I., & Yener, A. (2013). Improving secrecy rate via spectrum leasing for friendly jamming. IEEE Transactions on Wireless Communications, 12, 134–145.

    Article  Google Scholar 

  23. Zhang, R., Song, L., Han, Z., Jiao, B., & Debbah, M. (2010). Physical layer security for two way relay communications with friendly jammers. Global Telecommunications Conference GLOBECOM, 2010, 1–6.

    Google Scholar 

  24. Junsu, K., Ikhlef, A., & Schober, R. (2012). Combined relay selection and cooperative beamforming for physical layer security. Journal of Communications and Networks, 14, 364–373.

    Article  Google Scholar 

  25. Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., & Zwillinger, D. (2007). Table of integral, series and products (17th ed.). Amsterdam: Elsevier.

  26. Sakran, H., Shokair, M., Nasr, O., El-Rabaie, S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6, 2676–2687.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper was supported by 2014 Special Research Fund of Electrical Engineering of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Yun Kong.

Appendices

Appendix 1: Solving the CDF of RV \(\textit{ASR}_1\) in Formula (25)

In the high SNR \(\gamma \), \(\textit{ASR}_1\) in (25) is rewritten as

$$\begin{aligned} {\textit{ASR}_1} = \min \left\{ {{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{11}^3}}{{1 + \frac{{b \omega _5^2}}{{\left( {1 - a} \right) \omega _4^2}} + \gamma {\omega _{31}}}}} \right) } \right] }^+ },{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{21}^3}}{{1 + \frac{{a \omega _4^1}}{{\left( {1 - b} \right) \omega _5^1}} + \gamma {\omega _{31}}}}} \right) } \!\right] }^+ }} \right\} \nonumber \\ \end{aligned}$$
(52)

Then, the CDF of \(\textit{ASR}_1\) is expressed as

$$\begin{aligned} {F_{{\textit{ASR}_1}}}(x) = \Pr \left[ {{\textit{ASR}_1} < x} \right] = 1 - \Pr \left[ {{\textit{ASR}_1} \ge x} \right] \end{aligned}$$
(53)

Substituting (52) into (53), we obtain (54) as

$$\begin{aligned} {F_{{\textit{ASR}_1}}}(x)&= 1 - \Pr \left[ {{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{11}^3}}{{1 + \frac{{b\omega _5^2}}{{\left( {1 - a} \right) \omega _4^2}} + \gamma {\omega _{31}}}}} \right) } \right] }^+ }\right. \nonumber \\&\ge \left. x,{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{21}^3}}{{1 + \frac{{a\omega _4^1}}{{\left( {1 - b} \right) \omega _5^1}} + \gamma {\omega _{31}}}}} \right) } \right] }^+ } \ge x \right] \nonumber \\&= 1 - \Pr \left[ \omega _{11}^3 \ge \frac{{{2^{3x}} - 1}}{\gamma } + \frac{{{2^{3x}}b}}{{\gamma \left( {1 - a} \right) }}\left( {\frac{{\omega _5^2}}{{\omega _4^2}}} \right) + {2^{3x}}{\omega _{31}},\omega _{21}^3\right. \nonumber \\&\ge \left. \frac{{{2^{3x}} - 1}}{\gamma } + \frac{{{2^{3x}}a}}{{\gamma \left( {1 - b} \right) }}\left( {\frac{{\omega _4^1}}{{\omega _5^1}}} \right) +2^{3x}{\omega _{31}} \right] \end{aligned}$$
(54)

Set \({\theta _x} = {2^{3x}}\), \({p_x} = {{\left( {{2^{3x}} - 1} \right) } \big / \gamma }\), \({m_x} = {{\left( {{2^{3x}}a} \right) } \big / {\left( {\gamma \left( {1 - b} \right) } \right) }}\), \({n_x} = {{\left( {{2^{3x}}b} \right) } \big / {\left( {\gamma \left( {1 - a} \right) } \right) }}\), and \({Y_\xi } = \frac{{\omega _4^\xi }}{{\omega _5^\xi }},\,\xi \in \left\{ {1,2} \right\} \), then (54) is rewritten as

$$\begin{aligned} {F_{{\textit{ASR}_1}}}(x)&= 1 - \Pr \left[ {\omega _{11}^3 \ge {p_x} + \frac{{{n_x}}}{{{Y_2}}} + {\theta _x}{\omega _{31}},\,\,\omega _{21}^3 \ge {p_x} + {m_x}{Y_1} + {\theta _x}{\omega _{31}}} \right] \nonumber \\&= 1 - \int \limits _0^\infty {{f_{{\omega _{31}}}}(y)} \int \limits _0^\infty {{f_{{Y_1}}}(z)} \int \limits _0^\infty {{f_{{Y_2}}}(t)\left\{ {1 - {F_{\omega _{11}^3}}\left( {{p_x} + \frac{{{n_x}}}{t} + {\theta _x}y} \right) } \right\} } \nonumber \\&\times \, \left\{ {1 - {F_{\omega _{21}^3}}\left( {{p_x} + {m_x}z + {\theta _x}y} \right) } \right\} dtdzdy \end{aligned}$$
(55)

where \({f_{{\omega _{31}}}}(x)\), \({F_{\omega _{11}^3}}(x)\), \({F_{\omega _{21}^3}}(x)\) are the probability density functions (PDF) of the RV \({\omega _{31}}\), the CDF of the RVs \(\omega _{11}^3\), and \(\omega _{21}^3\) , respectively, and are given as

$$\begin{aligned} {f_{{\omega _{31}}}}(x)&= {\lambda _3}{e^{ - {\lambda _3}x}}\end{aligned}$$
(56)
$$\begin{aligned} {F_{\omega _{\xi 1}^3}}(x)&= 1 - {e^{ - {\lambda _\xi }x}},\,\,\quad \xi \in \left\{ {1,2} \right\} \end{aligned}$$
(57)

The CDF of \({Y_\xi }\) is given as

$$\begin{aligned} {F_{{Y_\xi }}}(z) = \Pr \left( {{Y_\xi } < z} \right) = \Pr \left( {\,\,\frac{{\omega _4^\xi }}{{\omega _5^\xi }} < z} \right) = \int \limits _0^\infty {{f_{\omega _5^\xi }}(y)\int \limits _0^{yz} {{f_{\omega _4^\xi }}(x)dxdy} } \end{aligned}$$
(58)

where \({f_{\omega _4^\xi }}(x)\) and \({f_{\omega _5^\xi }}(x)\) are the PDF of the exponential RVs \(\omega _4^\xi \) and \(\omega _5^\xi \,\), respectively, and are give as

$$\begin{aligned} {f_{\omega _\upsilon ^\xi }}(x) = {\lambda _\upsilon }{e^{ - {\lambda _\upsilon }x}},\quad \upsilon \in \left\{ {4,5} \right\} ,\,\quad \xi \in \left\{ {1,2} \right\} \end{aligned}$$
(59)

Substituting (59) into (58), we obtain (60) as

$$\begin{aligned} {F_{{Y_\xi }}}(z) = \int \limits _0^\infty {{\lambda _5}{e^{ - {\lambda _5}y}}\int \limits _0^{yz} {{\lambda _4}{e^{ - {\lambda _4}x}}dxdy = } } \frac{{{\lambda _4}z}}{{{\lambda _4}z + {\lambda _5}}} \end{aligned}$$
(60)

From \({F_{{Y_\xi }}}(z)\), the PDF of RV \({Y_\xi }\) is given as

$$\begin{aligned} {f_{{Y_\xi }}}(z) = \frac{{d{F_{{Y_\xi }}}(z)}}{{dz}} = \frac{{{\lambda _4}{\lambda _5}}}{{{{\left( {{\lambda _4}z + {\lambda _5}} \right) }^2}}} \end{aligned}$$
(61)

Substituting (56), (57) and (61) into (55), and after some manipulations, the CDF of \(\textit{ASR}_1\) is obtained as

$$\begin{aligned} {F_{{\textit{ASR}_1}}}(x)&= 1 - \frac{{{\lambda _1}{\lambda _2}{\lambda _3}{m_x}{n_x}{e^{ - {p_x}\left( {{\lambda _1} + {\lambda _2}} \right) }}{e^{{{{\lambda _1}{\lambda _4}{n_x}} / {{\lambda _5} + {{{\lambda _2}{\lambda _5}{m_x}} / {{\lambda _4}}}}}}}}}{{{\lambda _3} + {\theta _x}\left( {{\lambda _1} + {\lambda _2}} \right) }}\nonumber \\&\times \, \varGamma \left[ { - 1,{{{\lambda _1}{\lambda _4}{n_x}} \big / {{\lambda _5}}}} \right] \times \varGamma \left[ { - 1,{{{\lambda _2}{\lambda _5}{m_x}} \big / {{\lambda _4}}}} \right] \end{aligned}$$
(62)

where \(\varGamma \left[ {a,z} \right] \) is the incomplete gamma function and is defined as \(\varGamma (a,z) = \mathop \int \nolimits _z^\infty {t^{a - 1}}{e^{ - t}}dt\) [25, Eq. (8.350.2)].

Appendix 2: Solving the CDF of RV \(\textit{ASR}_i\) in Formula (41)

The CDF of RV \(\textit{ASR}_i\), \(i = \left\{ {1,2,\ldots ,M} \right\} \), is given from (41) as

$$\begin{aligned} {F_{{\textit{ASR}_i}}}(x)&= \Pr \left[ {{\textit{ASR}_i} < x} \right] \nonumber \\&= \Pr \left[ {\min \left\{ {{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{1i}^3}}{{1 + \gamma {\omega _{3i}}}}} \right) } \right] }^+ },{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{2i}^3}}{{1 + \gamma {\omega _{3i}}}}} \right) } \right] }^+ }} \right\} < x} \right] \nonumber \\&= 1 - \Pr \left[ {\min \left\{ {{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{1i}^3}}{{1 + \gamma {\omega _{3i}}}}} \right) } \right] }^+ },\,{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{2i}^3}}{{1 + \gamma {\omega _{3i}}}}} \right) } \right] }^+ }} \right\} \ge x} \right] \,\nonumber \\&= 1 - \Pr \left[ {{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{1i}^3}}{{1 + \gamma {\omega _{3i}}}}} \right) } \right] }^+ } \ge x,\,{{\left[ {\frac{1}{3}{{\log }_2}\left( {\frac{{1 + \gamma \omega _{2i}^3}}{{1 + \gamma {\omega _{3i}}}}} \right) } \right] }^+ } \ge x} \right] \end{aligned}$$
(63)

After some manipulations of (63), the CDF of \(\textit{ASR}_i\) is obtained as

$$\begin{aligned} {F_{{\textit{ASR}_i}}}(x)&= 1 - \Pr \left[ {\omega _{1i}^3 \ge {p_x} + {\theta _x}{\omega _{3i}}\,,\,\omega _{2i}^3 \ge {p_x} + {\theta _x}{\omega _{3i}}} \right] \,\nonumber \\&= 1 - \int \limits _0^\infty {{f_{{\omega _{3i}}}}(y)\left\{ {1 - {F_{\omega _{1i}^3}}\left( {{p_x} + {\theta _x}y} \right) } \right\} } \left\{ {1 - {F_{\omega _{2i}^3}}\left( {{p_x} + {\theta _x}y} \right) } \right\} dy \end{aligned}$$
(64)

where \({f_{{\omega _{3i}}}}(x)\), \({F_{\omega _{1i}^3}}(x)\), \({F_{\omega _{2i}^3}}(x)\) are the PDF of the RV \({\omega _{3i}}\), the CDF of the RVs \(\omega _{1i}^3\) and \(\omega _{2i}^3\), \(i = \left\{ {1,2,\ldots ,M} \right\} \), respectively, and are obtained as same as (56) and (57).

Then, CDF of \(\textit{ASR}_i\) is obtained as

$$\begin{aligned} {F_{{\textit{ASR}_i}}}(x) = 1 - \frac{{{\lambda _3}{e^{ - {p_x}\left( {{\lambda _1} + {\lambda _2}} \right) }}}}{{{\lambda _3} + {\theta _x}\left( {{\lambda _1} + {\lambda _2}} \right) }} \end{aligned}$$
(65)

Appendix 3: Solving Formula (49)

In the high SNR \(\gamma \), (49) is rewritten as

$$\begin{aligned} P_{CC}^{{x_1}}&= \underbrace{\Pr \left[ {\left( {1 - b} \right) \omega _5^1 \ge a{\theta _{{R_0}{R_0}}}\omega _4^1,\,a\gamma \omega _4^1 + \gamma {\omega _{31}} \ge {\theta _{{R_0}{R_0}}}} \right] }_{{I_1}}\nonumber \\&+\, \underbrace{\Pr \left[ {{Y_1} > \underbrace{{{\left( {1 - b} \right) } \big / {\left( {a{\theta _{{R_0}{R_0}}}} \right) }}}_{{y_0}},{\omega _{31}} \ge \frac{a}{{\gamma \left( {1 - b} \right) }} \times \left( {\underbrace{{{{\theta _{{R_0}{R_0}}}\left( {1 - b} \right) } \big / a}}_{{y_1}} - {Y_1}} \right) } \right] }_{{I_2}}\nonumber \\ \end{aligned}$$
(66)

The first component in (66) is given as

$$\begin{aligned} {I_1}&= \int \limits _{{{{\theta _{{R_0}{R_0}}}} / {\left( {a\gamma } \right) }}}^\infty {{f_{\omega _4^1}}(x)\left\{ {1 - {F_{\omega _5^1}}\left( {\frac{{a{\theta _{{R_0}{R_0}}}x}}{{\left( {1 - b} \right) }}} \right) } \right\} dx} \nonumber \\&+\, \int \limits _0^{{{{\theta _{{R_0}{R_0}}}} / {\left( {a\gamma } \right) }}} {{f_{\omega _4^1}}(x)\left\{ {1 - {F_{\omega _5^1}}\left( {\frac{{a{\theta _{{R_0}{R_0}}}x}}{{\left( {1 - b} \right) }}} \right) } \right\} \left\{ {1 - {F_{{\omega _{31}}}}\left( {\frac{{{\theta _{{R_0}{R_0}}} - a\gamma x}}{\gamma }} \right) } \right\} dx}\qquad \quad \end{aligned}$$
(67)

where \({F_{\omega _5^1}}(x)\) and \({F_{{\omega _{31}}}}(x)\) are the CDF of the exponential RVs \(\omega _5^1\) and \({\omega _{31}}\), respectively, and are given as \({F_{\omega _5^1}}(x) = 1 - {\lambda _5}{e^{ - {\lambda _5}x}}\) and \({F_{{\omega _{31}}}}(x) = 1 - {\lambda _3}{e^{ - {\lambda _3}x}}\).

Hence, after some manipulations, the first component in (66) is solved as

$$\begin{aligned} {I_1}&= \frac{{{\lambda _4}{e^{{{ - {\theta _{{R_0}{R_0}}}\left( {{\lambda _4} + {{a{\lambda _5}{\theta _{{R_0}{R_0}}}} / {\left( {1 - b} \right) }}} \right) } / {\left( {a\gamma } \right) }}}}}}{{{\lambda _4} + {{a{\lambda _5}{\theta _{{R_0}{R_0}}}} / {\left( {1 - b} \right) }}}}\nonumber \\&+\, \frac{{{\lambda _4}{e^{{{ - {\lambda _3}{\theta _{{R_0}{R_0}}}} / \gamma }}}}}{{{\lambda _4} + {{a{\lambda _5}{\theta _{{R_0}{R_0}}}} / {\left( {1 - b} \right) - a{\lambda _3}}}}}\left\{ {1 - {e^{{{ - {\theta _{{R_0}{R_0}}}\left( {{\lambda _4} + {{a{\lambda _5}{\theta _{{R_0}{R_0}}}} / {\left( {1 - b} \right) - a{\lambda _3}}}} \right) } / {\left( {a\gamma } \right) }}}}} \right\} \qquad \quad \end{aligned}$$
(68)

The second component in (66) is given as

$$\begin{aligned} {I_2}&= \Pr \left[ {{Y_1} > {y_0},{\omega _{31}} \ge \frac{a}{{\gamma \left( {1 - b} \right) }} \times \left( {{y_1} - {Y_1}} \right) } \right] \nonumber \\&= \int \limits _{\max ({y_0},{y_1})}^\infty {{f_{{Y_1}}}(x)dx} + {\left[ {\int \limits _{{y_0}}^{{y_1}} {{f_{{Y_1}}}(x)\left\{ {1 - {F_{{\omega _{31}}}}\left( {\frac{{a\left( {{y_1} - x} \right) }}{{\gamma \left( {1 - b} \right) }}} \right) } \right\} } } \right] ^+ } \end{aligned}$$
(69)

Substituting (61) into (69), after some manipulations, we obtained as

$$\begin{aligned} {I_2}&= \frac{{{\lambda _5}}}{{{\lambda _4}\max ({y_0},{y_1}) + {\lambda _5}}} + {\lambda _4}{\lambda _5}{e^{ - {{{\lambda _3}{\theta _{{R_0}{R_0}}}} / \gamma }}}\nonumber \\&\times \, {\left[ \begin{array}{l} \frac{{{e^{{{a{\lambda _3}{y_0}} / {\left( {\gamma \left( {1 - b} \right) } \right) }}}}}}{{{\lambda _4}\left( {{\lambda _4}{y_0} + {\lambda _5}} \right) }} - \frac{{{e^{{{a{\lambda _3}{y_1}} / {\left( {\gamma \left( {1 - b} \right) } \right) }}}}}}{{{\lambda _4}\left( {{\lambda _4}{y_1} + {\lambda _5}} \right) }} - \frac{{a{\lambda _3}{e^{{{a{\lambda _3}{\lambda _5}} / {\left( {\gamma \left( {1 - b} \right) {\lambda _4}} \right) }}}}}}{{\gamma \left( {1 - b} \right) \lambda _4^2}}\\ \times \left\{ {Ei\left[ {\frac{{a{\lambda _3}}}{{\gamma \left( {1 - b} \right) }}\left( {{y_0} + {{{\lambda _5}} / {{\lambda _4}}}} \right) } \right] - Ei\left[ {\frac{{a{\lambda _3}}}{{\gamma \left( {1 - b} \right) }}\left( {{y_1} + {{{\lambda _5}} / {{\lambda _4}}}} \right) } \right] } \right\} \end{array} \right] ^+ } \end{aligned}$$
(70)

where \(Ei[x]\) is the exponential integral function, \(Ei(x) = - \int _{ - x}^\infty {\left( {{{{e^{ - t}}} \big / t}} \right) } dt\), [25, Eq. (8.211.1)].

Substituting (68) and (70) into (66), we obtains the probability of the correct computation of the secrecy packet \(x_1\) as in (50).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, P.N., Kong, H.Y. An Integration of Source and Jammer for a Decode-and-Forward Two-way Scheme Under Physical Layer Security. Wireless Pers Commun 79, 1741–1764 (2014). https://doi.org/10.1007/s11277-014-1956-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1956-z

Keywords

Navigation