Skip to main content
Log in

Effect of Network Coding and Multi-packet Reception on Point-to-Multi-point Broadcast Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper addresses throughput and delay gains resulting from network coding (NC) used to complement multi-packet reception (MPR) in a single-relay multi-user wireless network in saturated and non-saturated traffic conditions. The cross-layer analytical framework is presented in analyzing the performance of the encode-and-forward (EF) relaying wireless networks, where employed at the physical layer under the conditions of unsaturated traffic and finite-length queue at the data link layer. Considering the characteristics of EF relaying protocol at the physical layer, first a model of a two-hop EF relaying wireless channel is proposed as an equivalent extended multi-dimensional Markovian state transition model in queuing analysis. We show that the initial transmissions and the back-filling process can be greatly sped up through a combination of NC and MPR. We provided closed-form expressions for two-hop unbalanced bidirectional traffic cases both with and without NC even if the buffers on nodes are unsaturated. The analytical results are mainly derived by solving queuing systems for the buffer behavior at the relay node. The model has been evaluated through simulations and in comparison with the existing analytical model. Simulation results show good agreement with the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ishmael, J., Bury, S., Pezaros, D., & Race, N. (2008). Deploying rural community wireless mesh networks. IEEE Internet Computing, 12(4), 22–29.

    Article  Google Scholar 

  2. Soldani, D., & Dixit, S. (2008). Wireless relays for broadband access [radio communications series]. Communications Magazine, IEEE, 46(3), 58–66.

    Article  Google Scholar 

  3. Wang, Z., Sadjadpour, H. R., & Garcia-Luna-Aceves, J. (2008). Capacity-delay tradeoff for information dissemination modalities in wireless networks. IEEE international symposium on Information Theory, 2008. ISIT 2008 (pp. 677–681). IEEE.

  4. Wang, X., & Garcia-Luna-Aceves, J. (2009). Embracing interference in ad hoc networks using joint routing and scheduling with multiple packet reception. Ad Hoc Networks, 7(2), 460–471.

    Article  Google Scholar 

  5. Eugster, P., Guerraoui, R., Kermarrec, A., & Massoulié, L. (2004). Epidemic information dissemination in distributed systems. Computer, 37(5), 60–67.

    Article  Google Scholar 

  6. IEEE STD 802.11-2007. (2007). Part 11. Wireless lan medium access control (MAC) and physical layer (PHY) specifications. IEEE Std. 2007. doi:10.1109/IEEESTD.2007.92296.

  7. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  8. Fragouli, C., & Widmer, J. (2008). Efficient broadcasting using network coding. IEEE/ACM Transactions on Networking, 16(2), 450–463.

    Article  Google Scholar 

  9. Babich, F., & Comisso, M. (2009). Throughput and delay analysis of 802.11-based wireless networks using smart and directional antennas. IEEE Transactions on Communications, 57(5), 1413–1423.

    Article  Google Scholar 

  10. Zhang, L., Yantai, S., Oliver, Y., & Guanghong, W. (2006). Study of medium access delay in ieee 802.11 wireless networks. IEICE Transactions on Communications, 89(4), 1284–1293.

    Article  Google Scholar 

  11. Xiao, Y. (2005). Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11 e wireless lans. IEEE Transactions on Wireless Communications, 4(4), 1506–1515.

    Article  Google Scholar 

  12. Gupta, V., Gong, M., Dharmaraja, S., & Williamson, C. (2010). Analytical modeling of bidirectional multi-channel IEEE 802.11 MAC protocols. International Journal of Communication Systems, 24(5), 647–665.

    Article  Google Scholar 

  13. Kao, H., Wu, P., & Lee, C. (2011). Analysis and enhancement of multi-channel mac protocol for ad hoc networks. International Journal of Communication Systems, 24(3), 310–324.

    Article  Google Scholar 

  14. Rui, X., Hou, J., & Zhou, L. (2012). Decode-and-forward with full-duplex relaying. International Journal of Communication Systems, 25(2), 270–275.

    Article  Google Scholar 

  15. Liu, W., Jin, H., Wang, X., & Guizani, M. (2011). A novel IEEE 802.11-based MAC protocol supporting cooperative communications. International Journal of Communication Systems, 24(11), 1480–1495.

    Article  Google Scholar 

  16. Ke, C., Wei, C., Lin, K., & Ding, J. (2011). A smart exponential-threshold-linear backoff mechanism for ieee 802.11 WLANs. International Journal of Communication Systems, 24(8), 1033–1048.

    Article  Google Scholar 

  17. Felemban, E., & Ekici, E. (2011). Single hop IEEE 802.11 DCF analysis revisited: Accurate modeling of channel access delay and throughput for saturated and unsaturated traffic cases. IEEE Transactions on Wireless Communications, 10(10), 3256–3266.

    Article  Google Scholar 

  18. Foh, C., Zukerman, M., & Tantra, J. (2007). A markovian framework for performance evaluation of IEEE 802.11. IEEE Transactions on Wireless Communications, 6(4), 1265–1276.

    Article  Google Scholar 

  19. Wu, C., Hou, T., Leou, M., Liaw, Y., & Chan, M. (2010). Adaptive backoff scheme for ad hoc networks based on IEEE 802.11. International Journal of Communication Systems, 23(12), 1632–1650.

    Article  Google Scholar 

  20. Liu, J., Goeckel, D., & Towsley, D. (2007). Bounds on the gain of network coding and broadcasting in wireless networks. In 26th IEEE international conference on computer communications, INFOCOM 2007 (pp. 724–732). IEEE.

  21. Chaporkar, P., & Proutiere, A. (2007). Adaptive network coding and scheduling for maximizing throughput in wireless networks. In Proceedings of the 13th annual ACM international conference on mobile computing and networking (pp. 135–146), ACM.

  22. Chen, W., Letaief, K., & Cao, Z. (2007). Opportunistic network coding for wireless networks. In IEEE international conference on communications, 2007. ICC’07 (pp. 4634–4639). IEEE.

  23. Asterjadhi, A., Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2010). Toward network coding-based protocols for data broadcasting in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 9(2), 662–673.

    Article  Google Scholar 

  24. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). On MAC scheduling and packet combination strategies for practical random network coding. In IEEE international conference on communications, 2007. ICC’07 (pp. 3582–3589). IEEE.

  25. Sagduyu, Y., & Ephremides, A. (2008). Cross-layer optimization of mac and network coding in wireless queueing tandem networks. IEEE Transactions on Information Theory, 54(2), 554–571.

    Article  MathSciNet  Google Scholar 

  26. Le, J., Lui, J., & Chiu, D. (2008). How many packets can we encode? An analysis of practical wireless network coding. In The 27th conference on computer communications. INFOCOM 2008 (pp. 371–375). IEEE.

  27. Argyriou, A. (2009). Wireless network coding with improved opportunistic listening. IEEE Transactions on Wireless Communications, 8(4), 2014–2023.

    Article  Google Scholar 

  28. Hsu, Y., Abedini, N., Ramasamy, S., Gautam, N., Sprintson, A., Shakkottai, S., et al. (2011). Opportunities for network coding: To wait or not to wait. In IEEE international symposium on information theory proceedings (ISIT) (pp. 791–795). IEEE.

  29. Cloud, J., Zeger, L., & Médard, M. (2012). Mac centered cooperationsynergistic design of network coding, multi-packet reception, and improved fairness to increase network throughput. IEEE Journal on Selected Areas in Communications, 30(2), 341–349.

    Article  Google Scholar 

  30. Hasegawa, J., Yomo, H., Kondo, Y., Davis, P., Suzuki, R., Obana, S., et al. (2009). Bidirectional packet aggregation and coding for voip transmission in wireless multi-hop networks. In IEEE international conference on communications, 2009. ICC’09 (pp. 1–6). IEEE.

  31. Fouli, K., Casse, J., Sergeev, I., Médard, M., & Maier, M. (2012). Broadcasting XORs: On the application of network coding in access point-to-multipoint networks. In Multiple Access Communications (pp. 25–36). Berlin: Springer.

  32. Hsu, Y. P., & Sprintson, A. (2012). Opportunistic network coding: Competitive analysis. In International symposium on network coding (NetCod) (pp. 191–196). IEEE.

  33. Antonopoulos, A., Verikoukis, C., Skianis, C., & Akan, O. B. (2013). Energy efficient network coding-based MAC for cooperative ARQ wireless networks. Ad Hoc Networks, 11(1), 190–200.

  34. Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., & Crowcroft, J. (2008). XORs in the air: Practical wireless network coding. IEEE/ACM Transactions on Networking (TON), 16(3), 497–510.

    Article  Google Scholar 

  35. Hirantha Sithira Abeysekera, B., Matsuda, T., & Takine, T. (2008). Dynamic contention window control mechanism to achieve fairness between uplink and downlink flows in IEEE 802.11 wireless LANs. IEEE Transactions on Wireless Communications, 7(9), 3517–3525.

    Article  Google Scholar 

  36. Chatzimisios, P., Boucouvalas, A., & Vitsas, V. (2004). Effectiveness of RTS/CTS handshake in ieee 802.11 a wireless LANs. Electronics Letters, 40(14), 915–916.

    Article  Google Scholar 

  37. Malone, D., Duffy, K., & Leith, D. (2007). Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking, 15(1), 159–172.

    Article  Google Scholar 

Download references

Acknowledgments

The authors indebted to Department of Electrical, Biomedical and Mechatronics Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran for support. The research of the authors was in part supported by a grant from Islamic Azad University, Qazvin Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Masoud Mirrezaei.

Appendices

Appendix 1: Proof of Lemma 1

Proof

The sum of steady-state probabilities \(Q(0), Q(1*)\) and \(Q(2*)\) and the ratio of the steady-state probabilities \(Q(1*)\) to \(Q(2*)\) are proportional:

$$\begin{aligned} Q(0) + Q(1*) + Q(2*) = 1,\quad \frac{Q(1*)}{Q(2*)} = \frac{(\lambda _1+\lambda _{1,2})}{(\lambda _2+\lambda _{2,1})}\frac{\mu _2}{\mu _1} = \frac{\rho _1}{\rho _2}. \end{aligned}$$
(34)

where \(Q(v*) = \sum _{\mathcal {V}_1^n\in \{1,2\}^n} Q(v\mathcal {V}_1^n)\)

By solving equations in 34,

$$\begin{aligned} Q(v*) = \frac{\rho _v}{\rho _1 + \rho _2}(1-Q(0)). \end{aligned}$$
(35)

The arrival rate \(\lambda _R\) in relay node \(\mathbf {R}\) and the departure rate \(\mu _R\) from relay node \(\mathbf {R}\) are balanced in steady-state. They are expressed as:

$$\begin{aligned} \lambda _R&= (\lambda _{0,1} + \lambda _{0,2}+\lambda _{1,2}+\lambda _{2,1})Q(0) + (\lambda _1 + \lambda _2+\lambda _{1,2}+\lambda _{2,1})(1-Q(0)) \nonumber \\&= (\lambda _1 + \lambda _2+\lambda _{1,2}+\lambda _{2,1})\bigg [\frac{1-\tau _R(1-Q(0))}{1-\tau _R}\bigg ], \nonumber \\ \mu _R&= \mu _1Q(1*) + \mu _2Q(2*) = (\lambda _1 + \lambda _2+\lambda _{1,2}+\lambda _{2,1})\frac{(1-Q(0))}{\rho _1 + \rho _2}, \nonumber \\ \mu _R&= \lambda _R \Rightarrow Q(0) = \frac{(1-\tau _R)(1-\rho _1 - \rho _2)}{(1-\tau _R) + \tau _R(\rho _1 + \rho _2)}. \end{aligned}$$
(36)

We can calculate the relation between \(Q(1\mathcal {V}_1^n)\) and \(Q(2\mathcal {V}_1^n)\) as Eq. and apply the detailed balance equations in ascending order of queue state length obtaining these results:

$$\begin{aligned} \frac{Q(1\mathcal {V}_1^n)}{Q(2\mathcal {V}_1^n)}&= \frac{\rho _1}{\rho _2}, \nonumber \\ (\lambda _{0,1} + \lambda _{0,2}+\lambda _{1,2}+\lambda _{2,1})Q(0)&= \mu _1Q(1) + \mu _2Q(2),\nonumber \\ (\lambda _1 + \lambda _2+\lambda _{1,2}+\lambda _{2,1})Q(\mathcal {V}_1^n)&= \mu _1Q(1\mathcal {V}_1^n) + \mu _2Q(2\mathcal {V}_1^n). \end{aligned}$$
(37)

By applying these equations, the following lemma is obtained.

Appendix 2: Proof of Lemma 2

Proof

From 7, the steady-state probability \(P_v(0)\) can be expressed as:

$$\begin{aligned} P_v(0) = Q(0) + \sum _{n_{\bar{v}}=1}^\infty \frac{\rho _{\bar{v}}^{n_{\bar{v}}}Q(0)}{(1-\tau _R)} = Q(0)\bigg [ \frac{1-\tau _R(1-\rho _{\bar{v}})}{(1-\tau _R)(1-\rho _{\bar{v}})}\bigg ] . \end{aligned}$$
(38)

From 7, the steady-state probabilities \(P(n)\) after some algebra can be expanded as:

$$\begin{aligned} P(n) =\sum _{\mathcal {V}_1^n\in \{1,2\}^n} Q(\mathcal {V}_1^n) = \frac{(\rho _1 + \rho _2)^n}{(1-\tau _R)}P(0); n>0 , P(0) = Q(0). \end{aligned}$$
(39)

Appendix 3: Proof of Lemma 3

Proof

It is assumed that the steady-state probability \(P(0,0)\) is positive, i.e. both virtual queues are non-saturated. Figure 14 illustrates the Markov chain with respect to the number of packets in virtual queue \(v\) at relay node \(\mathbf {R}\). The state transition probability from states 0 to 1 is equal to:

$$\begin{aligned} \lambda _{2,v} = \lambda _v\bigg ( 1-\frac{P(0,0)}{P_v(0)}\bigg ) + \lambda _{0,v}\frac{P(0,0)}{P_v(0)}+\lambda _{1,1}. \end{aligned}$$
(40)

The detailed balance equations are obtained as follows:

$$\begin{aligned} P_v(1)&= \rho _vP_v(0) + \frac{\rho _v\tau _R}{1-\tau _R}P(0,0), \nonumber \\ P_v(n+1)&= \rho _vP_v(n); n\ge 1. \end{aligned}$$
(41)

where \(\rho _v= \frac{\lambda _{0,v}+\lambda _{1,1}}{\mu _v}\).

Summing all the steady-state probabilities \(P_v(n)\) , the normalized condition and some algebra enable us to obtain Lemma 3 as follows: \(\sum _{n=0}^\infty P_v(n) = 1 \Rightarrow \frac{P_v(0)(1-\tau _R)+\rho _v\tau _RP(0,0)}{(1-\rho _v)(1-\tau _R)} = 1\).

Fig. 14
figure 14

The Markov chain with respect to the number of packets in virtual queue \(v\) at relay node \(\mathbf {R}\) in the NC-CSMA/CA protocol

Appendix 4: Proof of Lemma 4

Proof

Based on Fig. 5, we can express the detailed balance equation as follows:

$$\begin{aligned} P(1,0)&= \frac{\rho _1}{1-\tau _R}P(0,0), P(0,1) = \frac{\rho _2}{1-\tau _R}P(0,0), \nonumber \\ P(n_1+1,n_2)&= \rho _1P(n_1,n_2), P(n_1,n_2+1) = \rho _2P(n_1,n_2), \end{aligned}$$
(42)

for any \((n_1,n_2)\ne (0,0)\). The above detailed balance equations provide:

$$\begin{aligned} P(n_1,n_2) = \frac{\rho _1^{n_1}\rho _2^{n_2}}{1-\tau _R}P(0,0). \end{aligned}$$
(43)

for any \((n_1,n_2)\ne (0,0)\).

Summing all the steady-state probabilities \(P(n_1,n_2)\), which are functions of \(P(0,0)\), and the normalized condition enable us to obtain

$$\begin{aligned} 1&= \sum _{n_1=0}^\infty \sum _{n_2=0}^\infty P(n_1,n_2) = \frac{P(0,0)}{1-\tau _R} \left( \sum _{n_1=0}^\infty \sum _{n_2=0}^\infty \rho _1^{n_1}\rho _2^{n_2}-\tau _R\right) \nonumber \\&= \frac{1-\tau _R(1-\rho _1)(1-\rho _2)}{(1-\tau _R)(1-\rho _1)(1-\rho _2)}P(0,0). \end{aligned}$$
(44)

and then an approximate expression of \(P(0,0)\) is derived as

$$\begin{aligned} P(0,0) = \frac{(1-\tau _R)(1-\rho _1)(1-\rho _2)}{1-\tau _R(1-\rho _1)(1-\rho _2)} \end{aligned}$$

Appendix 5: Proof of Proposition 1

Proof

First, we note the following relations:

$$\begin{aligned} \pi _{i,0}&= P_{eq}\pi _{i-1,0}=P_{eq}^i\pi _{0,0},\quad 1\le i\le m.\end{aligned}$$
(45)
$$\begin{aligned} \pi _{i,k}&= \frac{W_i-k}{P_dW_i}P_{eq}^i\pi _{0,0},\quad 0\le i\le m, 1\le k\le W_i-1. \end{aligned}$$
(46)

The stationary probability to be in state \(\pi _I\) can be evaluated as follows:

$$\begin{aligned} \pi _I=\pi _I(1-q)+\pi _{m,0}(1-q)P_{eq}+(1-q)(1-P_{eq})\sum _{i=0}^m\pi _{i,0} \Rightarrow \pi _I= \frac{1-q}{q}\pi _{0,0}. \end{aligned}$$
(47)

Employing the normalization condition, after some mathematical manipulations, and remembering the relation \(\sum _{i=0}^m\pi _{i,0} = \pi _{0,0}\frac{1-P_{eq}^{m+1}}{1-P_{eq}}\), it is possible to obtain:

$$\begin{aligned}&\sum \limits _{i=0}^m\sum \limits _{k=0}^{W_i-1}\pi _{i,k} +\pi _I = 1,\nonumber \\&\sum \limits _{k=1}^{W_i-1}\pi _{i,k} = \frac{P_{eq}^i\pi _{0,0}}{2P_d}(W_i-1),\nonumber \\&\sum \limits _{i=0}^m\frac{P_{eq}^i\pi _{0,0}}{2P_d}(2^iW-1) =\frac{\pi _{0,0}}{2P_d} \bigg (\frac{W(1-(2P_{eq})^{m+1})}{1-2P_{eq}} - \frac{(1-P_{eq}^{m+1})}{1-P_{eq}}\bigg ).\end{aligned}$$
(48)
$$\begin{aligned}&\sum \limits _{i=0}^m\sum \limits _{k=0}^{W_i-1}\pi _{i,k} = \sum \limits _{i=0}^m\sum \limits _{k=1}^{W_i-1}\pi _{i,k}+\sum \limits _{i=0}^m\pi _{i,0} \nonumber \\&\quad =\frac{\pi _{0,0}}{2P_d} \bigg (\frac{W(1-(2P_{eq})^{m+1})}{1-2P_{eq}} + \frac{(2P_d-1)(1-P_{eq}^{m+1})}{1-P_{eq}}\bigg ). \end{aligned}$$
(49)

The normalization condition yields the following equation for computation of \(\pi _{0,0}\):

$$\begin{aligned} \pi _{0,0} =\frac{2qP_d(1-P_{eq})(1-2P_{eq})}{2P_d(1-q)(1-P_{eq})(1-2P_{eq})+qW(1-P_{eq})(1-(2P_{eq})^{m+1})+q(1-2P_{eq})(2P_d-1)(1-P_{eq}^{m+1})}.\nonumber \\ \end{aligned}$$
(50)

Equation 50 is then used to compute \(\tau \) , the probability that a station starts a transmission in a randomly chosen time slot. In fact, taking into account that a packet transmission occurs when the back-off counter reaches zero, we have:

$$\begin{aligned} \tau&= \sum _{i=0}^m\pi _{i,0} = \pi _{0,0}\frac{1-P_{eq}^{m+1}}{1-P_{eq}} \nonumber \\&= \frac{2qP_d(1-P_{eq}^{m+1})(1-2P_{eq})}{2P_d(1-q)(1-P_{eq})(1-2P_{eq})+qW(1-P_{eq})(1-(2P_{eq})^{m+1})+q(1-2P_{eq})(2P_d-1)(1-P_{eq}^{m+1})}.\nonumber \\ \end{aligned}$$
(51)

Appendix 6: Proof of Proposition 2

Proof

According to Fig. 7, there are three durations that the considered node spends at a particular back-off state, \(D_I\), \(D_S\) and \(D_C\). In the idle state, the considered node waits one time slot before decrementing the back-off counter. When the considered node enters successful state we can compute the duration in this state as follows:

$$\begin{aligned} D_S= \frac{1}{1-p_{ss}}T_{suce}+ \frac{p_{si}}{1-p_{ss}}D_I + \frac{p_{sc}}{1-p_{ss}}D_S, \end{aligned}$$
(52)

where \(D_I=1\). Similarly, when the node enters a back-off state and finds the channel busy with a collision, this duration can be expressed as:

$$\begin{aligned} D_C= \frac{1}{1-p_{cc}}\overline{T_{coll}} + \frac{p_{cs}}{1-p_{cc}}D_S + \frac{p_{ci}}{1-p_{cc}}D_I. \end{aligned}$$
(53)

Let us consider the two cases in detail to calculate the average slot duration for each case:

  • Entering from a previous back-off state: The average slot duration in this case can be expressed using \(P_d\) as

    $$\begin{aligned} D_1 = \frac{1}{P_{d}}(p_{ei}D_I+p_{es}D_S+ p_{ec}D_C). \end{aligned}$$
    (54)
  • Entering from a transmission state: In this case we can compute the average slot duration as follows

    $$\begin{aligned} D_2 = \frac{\overline{CW}-1}{q\overline{CW}}(p_{ei}D_I+p_{es}D_S+ p_{ec}D_C). \end{aligned}$$
    (55)

Then we can compute the average slot duration as \(\mathcal {D} = (1-\tau )D_1 + \tau D_2.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirrezaei, S.M., Dosaranian-Moghadam, M. & Yazdanpanahei, M. Effect of Network Coding and Multi-packet Reception on Point-to-Multi-point Broadcast Networks. Wireless Pers Commun 79, 1859–1891 (2014). https://doi.org/10.1007/s11277-014-1962-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1962-1

Keywords

Navigation