Skip to main content
Log in

A Survey on Various Coherent and Non-coherent IR-UWB Receivers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The recent developments in radio technologies, paves its way to impulse radio (IR) ultra-wideband (UWB) communication, which is used for low power, short range and high bandwidth communication, thereby exploiting a large portion of radio spectrum. In this paper, a brief review of the work done by various researchers on coherent and non-coherent IR-UWB receivers has been analysed, based on their bit error rate (BER) performances, as well as pros and cons of using these receivers. An in depth study on the receivers concludes that, non-coherent IR-UWB receiver is preferred over its counterpart coherent IR-UWB receiver even though it comes at the expense of poor BER performance. The simulation results prove that, though the performances are same, the low complexity of energy detector (ED) receivers gives an edge over the autocorrelation receivers. Further, ED receiver suffers from noise, which paves way to using weighted ED (WED) receiver. The superiority of WED receivers over all the other non-coherent UWB receivers is further confirmed by the simulation performed in AWGN and IEEE 802.15.4a UWB channels. It can also be concluded from the review that, some special receivers such as generalized likelihood ratio test, multi-symbol differential detector and decision feedback differential transmitted reference, when clubbed with UWB systems, lead to further improvement in BER performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Win, M. Z., & Scholtz, R. A. (1998). Impulse radio: How it works. IEEE Communication Letters, 2(2), 36–38. doi:10.1109/4234.660796.

    Article  Google Scholar 

  2. Federal Communications Commission (FCC). Revision of part 15 of the commissions rules regarding ultra-wideband transmission systems. First report and order. ET Docket 98-153, FCC 02-48, Adopted: February 2002; Release: April 2002. http://www.ntia.doc.gov/fcc-filing/2000/ntia-comments-revision-part-15-commissions-regarding-ultrawideband-transmission-syst.

  3. Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communication Magazine, 41(7), 66–74. doi:10.1109/MCOM.2003.1215641.

    Article  Google Scholar 

  4. Aiello, G. R., & Rogerson, G. D. (2003). Ultra-wideband wireless systems. IEEE Microwave Magazine, 4(2), 36–47. doi:10.1109/MMW.2003.1201597.

    Article  Google Scholar 

  5. Wentzloff, D. D., Blazquez, R., Lee, F. S., Ginsburg, P., Powell, J., & Chandrakeshan, A. P. (2005). System design considerations for ultra-wideband communication. IEEE Communications Magazine, 43(8), 114–121. doi:10.1109/APS.2003.1217587.

    Article  Google Scholar 

  6. Mohammad, S., & Sadough, S. (2009). A tutorial on ultra wideband modulation and detection schemes. http://www.faculties.sbu.ac.in/sadough/pdf/uwb_tutorial.

  7. Fernandes, J. R., & Wentzloff, D. (2010). Recent advances in IR-UWB transceivers: An overview. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 3284–3287). doi:10.1109/ISCAS.2010.5537916.

  8. Gabriella, D., Benedetto, D., & Vojic, B. R. (2003). Ultra wide band wireless communications: A tutorial. Journal Of Communications and Networks, 5(4), 290–302.

  9. Stoica, L. (2008). Non coherent energy detection transceivers for ultra wideband impulse radio systems. Ph.D dissertation, University of Oulu. http://herkules.oulu.fi/isbn9789514287176/isbn9789514287176.

  10. Ghavami, M., Michael, M. L. B., & Kohno, R. (2007). Ultra wideband signals and systems in communication engineering (2nd ed.). London: Wiley.

  11. Saleh, A., & Venezuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137. doi:10.1109/JSAC.1987.1146527.

    Article  Google Scholar 

  12. Molisch, A. F., et al. (2004). IEEE 802.15.4a channel model-final report.

  13. Cramer, R. J. M., Scholtz, R. A., & Win, M. Z. (2002). Evaluation of an ultra-wideband propagation channel. IEEE Transactions on Antennas and Propagation, 50(5), 560–570. doi:10.1109/TAP.2002.1011221.

    Article  Google Scholar 

  14. Khan, M. G., Nordberg, J., & Claesson, I. (2008). Performance evaluation of RAKE receiver for low data rate UWB systems using multipath channels for industrial environments research report. Research report of Blekinge Institute of Technology. Issue:4, ISSN:1103-1581. www.epress.lib.uts.edu.au.

  15. Win, M. Z., & Scholtz, R. A. (2002). Characterization of ultra-wide bandwidth wireless indoor channels: A communication-theoretic view. IEEE Journal on Selected Areas in Communication, 20(9), 1613–1627. doi:10.1109/JSAC.2002.805031.

    Article  Google Scholar 

  16. Cassioli, D., Win, M. Z., Vatalaro, F., & Molisch, A. F. (2002). Performance of low complexity rake reception in a realistic UWB channel. In Proceedings of IEEE international conference on communications, ICC (Vol. 2, pp. 763–767). doi:10.1109/ICC.2002.996958.

  17. Choi, J. D., & Stark, W. E. (2002). Performance analysis of RAKE receivers for ultra-wideband communications with PPM and OOK in multipath channels. In Proceedings of IEEE international conference on communications, ICC (Vol. 3, pp. 1969–1973). doi:10.1109/ICC.2002.997192.

  18. Zhang, J., Kennedy, R. A., & Abhayapala, T. D. (2003). Performance of RAKE reception for ultra wideband signals in a lognormal-fading channel. In Proceedings of international workshop on ultra wideband systems, IWUWBS.

  19. D’Amico, A. A., Mengali, U., & Taponecco, L. (2004). Performance comparisons between two signalling formats for UWB communications. In Proceedings of IEEE international conference on communications, ICC (Vol. 6, pp. 3404–3408). doi:10.1109/ICC.2004.1313176.

  20. Mielczarek, B., Wessman, M. O., & Svensson, A. (2003). Performance of coherent UWB rake receivers with channel estimators. In Proceedings of 58th IEEE vehicular technology conference, VTC-Fall (Vol. 3, pp. 1880–1884). doi:10.1109/VETECF.2003.1285351.

  21. Hoctor, R., & Tomilson, H. (2002). Delay-hopped transmitted-reference RF communications. In Proceedings of IEEE conference on ultra wideband systems and technologies, UWBST (pp. 265–269). doi:10.1109/UWBST.2002.1006368.

  22. Luo, X., & Giannakis, G. B. (2006). Achievable rates of transmitted-reference ultra-wideband radio with PPM. IEEE Transactions on Communications, 54(9), 1536–1541. doi:10.1109/TCOMM.2006.881203.

    Article  Google Scholar 

  23. Liang, C., Wang, L., & Zhang, F. (2008). A modified transmitted reference UWB receiver. In Proceedings of 4th international conference on wireless communications, networking and mobile computing, WiCOM (pp. 1–4). doi:10.1109/WiCom.259.

  24. Romme, J., & Witrisal, K. (2006). Transmitted-reference UWB systems using weighted autocorrelation receivers. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1754–1761. doi:10.1109/TMTT.2006.872061.

    Article  Google Scholar 

  25. Franz, S., & Mitra, U. (2003). On optimal data detection schemes for UWB transmitted reference systems. In Proceedings of IEEE global telecommunications (Globecom) conference (Vol. 2, pp. 744–748). doi:10.1109/GLOCOM.2003.1258337.

  26. Franz, S., & Mitra, U. (2006). Generalized UWB transmitted reference systems. IEEE Journal on Selected Areas in Communication, 24(4), 780–786. doi:10.1109/JSAC.2005.863829.

    Article  Google Scholar 

  27. D’Amico, A. A., & Mengali, U. (2005). GLRT receivers for UWB systems. IEEE Communication Letters, 9(6), 487–489. doi:10.1109/LCOMM.2005.06032.

    Google Scholar 

  28. Choi, J. D., & Stark, W. E. (2002). Performance of ultra-wideband communications with suboptimal receivers in multipath channels. IEEE Journal on Selected Areas In Communications, 20(9), 1754–1766. doi:10.1109/JSAC.2002.805623.

    Article  Google Scholar 

  29. Jia, T., & Kim, D. I. (2008). Multiple access performance of balanced UWB transmitted-reference systems in multipath. IEEE Transactions on Wireless Communications, 7(3), 1084–1094. doi:10.1109/TWC.2008.060864.

    Article  Google Scholar 

  30. Quek, T. Q. S., & Win, M. Z. (2005). Analysis of UWB transmitted-reference communication systems in dense multipath channels. IEEE Journal on Selected Areas in Communication, 23(9), 1863–1874. doi:10.1109/JSAC.2005.853809.

    Article  Google Scholar 

  31. Hazra, R., Tyagi, A., & Mukherjee, S. (2013). Performance analysis of TR, ATR and DTR receivers in IR-UWB communication system. In Proceedings of IEEE international conference on signal processing, communication and computing, ICSPCC (pp. 1–6). doi:10.1109/ICSPCC.2013.6663934.

  32. Hazra, R., & Tyagi, A. (2013). Performance analysis of non-coherent IR-UWB receivers. In Proceedings of IEEE international conference on signal processing, computing and control, ISPCC (pp. 1–6). doi:10.1109/ISPCC.2013.6663437.

  33. Khan, M. G. (2009). On coherent and non-coherent receiver structures for impulse radio UWB systems. Ph.D dissertation, Blekinge Institute Of Technology. www.btu.se.

  34. Hazra, R., & Tyagi, A. (2013). Performance comparison of non-coherent IR-UWB receivers. In Proceedings of IEEE international conference on signal processing and communication, ICSC, Noida, India.

  35. Khan, M. G., Nordberg, J., & Claesson, J. (2007). A doublet-shift transmitted reference scheme for ultra-wideband communication systems. In Proceedings of IEEE international conference on ultra-wideband, ICUWB (pp. 845–850). doi:10.1109/ICUWB.2007.4381062.

  36. He, S., & Dong, X. (2010). Implementation of a low complexity UWB transmitted reference pulse cluster system. In Proceedings of 72nd IEEE vehicular technology conference, VTC Fall (pp. 1–5). doi:10.1109/VETECF.2010.5594332.

  37. Dong, X., & Jin, L. (2008). A new transmitted reference pulse cluster system for UWB communications. IEEE Transactions on Vehicular Technology, 57(5), 3217–3224. doi:10.1109/TVT.2007.914062.

    Article  Google Scholar 

  38. El Abri, K. B. H., & Bouallegue, A. (2012). A new UWB system based on a frequency domain transformation of the received signal. International Journal of Wireless and Mobile Networks (IJWMN), 4(2). doi:10.5121/ijwmn.2012.4212.

  39. Khani, H., & Azmi, K. (2008). Performance analysis of a high data rate UWB-DTR system in dense multipath channels. Progress in Electromagnetics Research B, 5, 119–131.

    Article  Google Scholar 

  40. Khani, H., & Azmi, K. (2010). Accurate analysis of a high data rate UWB DTR system in dense multipath fading channels. Physical Communication, 3(2), 67–72.

    Article  Google Scholar 

  41. D’Amico, A. A., & Mengali, U. (2005). GLRT receivers for UWB systems. IEEE Communications Letters, 9(6), 487–489. doi:10.1109/LCOMM.2005.06032.

    Google Scholar 

  42. Amico, A. A. D., Mengali, U., & Taponecco, L. (2007). Synchronization for differential transmitted reference UWB receivers. IEEE Transactions on Wireless Communications, 6(11), 4154–4163. doi:10.1109/TWC.2007.060270.

    Article  Google Scholar 

  43. Renzo, M. D., Annoni, L. A., Graziosi, F., & Santucci, F. (2008). A novel class of algorithms for timing acquisition of differential transmitted reference UWB receivers: Architecture, performance analysis and system design. IEEE Transactions on Wireless Communications, 7(6), 2368–2387. doi:10.1109/TWC.2008.070097.

    Article  Google Scholar 

  44. He, N., & Tepedelenlioglu, C. (2006). Performance analysis of non-coherent UWB receivers at different synchronization levels. IEEE Transactions on Wireless Communications, 5(6), 1266–1273. doi:10.1109/GLOCOM.2004.1379020.

    Article  Google Scholar 

  45. Ho, M., Somayazulu, V. S., Foerster, J., & Roy, S. (2002). A differential detector for an ultra-wideband communications system. In Proceedings of 55th IEEE vehicular technology conference, VTC Spring (Vol. 4, pp. 1896–1900). doi:10.1109/VTC.2002.1002952.

  46. Paussini, M., & Janssen, G. J. M. (2004). Analysis and comparison of autocorrelation receivers for IR-UWB signals based on differential detection. In Proceedings of IEEE international conference on acoustics, speech and signal processing, ICASSP (Vol. 4, pp. 513–516). doi:10.1109/ICASSP.2004.1326876.

  47. Paussini, M., Janssen, G. J. M., & Witrisal, K. (2006). Performance enhancement of differential UWB autocorrelation receivers under ISI. IEEE Journal on Selected Areas in Communications, 24(4), 815–821. doi:10.1109/JSAC.2005.863845.

    Article  Google Scholar 

  48. D’Amico, A. A., & Taponecco, L. (2006). A differential receiver for UWB systems. IEEE Transactions on Wireless Communications, 5(7), 1601–1605. doi:10.1109/TWC.2006.1673067.

    Article  Google Scholar 

  49. Leus, G., & Van-der-Veen, A. J. (2005). A weighted autocorrelation receiver for transmitted reference ultra wideband communications. In Proceedings of 6th IEEE workshop on signal processing advances in wireless communications (pp. 965–969). doi:10.1109/SPAWC.2005.1506283.

  50. Zhao, S., Liu, H., & Tian, Z. (2006). Decision directed autocorrelation receivers for pulsed ultra-wideband systems. IEEE Transactions on Wireless Communications, 5(8), 2175–2184. doi:10.1109/TWC.2006.1687733.

    Article  Google Scholar 

  51. Lottici, V., & Tian, Z. (2008). Multiple symbol differential detection for UWB communications. IEEE Transactions on Wireless Communication, 7(5), part 1, 1656–1666. doi:10.1109/TWC.2008.060667.

  52. Schenk, A., & Fischer, R. F. H. (2010). Multiple-symbol-detection-based noncoherent receivers for impulse-radio ultra-wideband. In Proceedings of International Zurich Seminar on Communications (IZS)

  53. Durisi, G., & Benedetto, S. (2005). Comparison between coherent and noncoherent receivers for UWB communications. Eurasip Journal on Advances in Signal Processing, 359–368. doi:10.1155/ASP.2005.359.

  54. Sahin, M. E., Guvenc, I., & Arslan, H. (2005). Optimization of energy detector receivers for UWB systems. In Proceedings of 61st IEEE vehicular technology conference, VTC Spring (Vol. 2, pp. 1386–1390). doi:10.1109/VETECS.2005.1543536.

  55. Rabbachin, A., & Oppermann, I. (2004). Synchronization analysis for UWB systems with a low-complexity energy collection receiver. In Proceedings of international workshop on ultra wideband systems joint with conference on ultrawideband systems and technologies, UWBST and IWUWBS (pp. 288–292). doi:10.1109/UWBST.2004.1320981.

  56. Cheng, X., & Guan, Y. L. (2009). Mitigation of cross-modulation interference in UWB energy detector receivers. IEEE Communication Letters, 13(6), 375–377. doi:10.1109/LCOMM.2009.090060.

    Article  Google Scholar 

  57. Cui, S. (2011). Modulation and multiple access techniques for ultra-wideband communication systems. Ph.D dissertation, Cleveland State University. www.csuohio.edu.

  58. D’Amico, A. A., Mengali, U., & Arias-de-Reyna, E. (2007). Energy-detection UWB receivers with multiple energy measurements. IEEE Transactions on Wireless Communications, 6(7), 2652–2659. doi:10.1109/TWC.2007.05974.

    Article  Google Scholar 

  59. Jianjun, W., Qinglin, L., & Hiage, X. (2008). Analysis of weighted non-coherent receiver for UWB-OOK signal in multipath channels. Journal of Electronics (China), 25(1), 32–38.

    Article  Google Scholar 

  60. Ji, S. A., Lee, S. J., & Kim, J. S. (2012). Simplified structure of weighted energy detector for UWB-IR systems. IEEE Electronics Letters, 48(1), 48–50. doi:10.1049/el.2011.2755.

    Article  Google Scholar 

  61. Wang, F., Tian, Z., & Sandler, B. M. (2011). Weighted energy detection of noncoherent ultra-wideband receiver design. IEEE Transactions on Wireless Communications, 10(2), 710–720. doi:10.1109/TWC.2010.120310.101390.

    Article  Google Scholar 

  62. Jianjun, W., Hiage, X., & Tian, Z. (2006). Weighted noncoherent receivers for UWB PPM signals. IEEE Communications Letters, 10(9), 655–657. doi:10.1109/LCOMM.2006.1714535.

    Article  Google Scholar 

  63. Hazra, R., & Tyagi, A. (2014). Cooperative impulse radio ultra-wideband communication using coherent and non-coherent detectors: A review. Wireless Personal Communications, 77(1), 719–748. doi:10.1007/s11277-013-1533-x.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjay Hazra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, R., Tyagi, A. A Survey on Various Coherent and Non-coherent IR-UWB Receivers. Wireless Pers Commun 79, 2339–2369 (2014). https://doi.org/10.1007/s11277-014-1988-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1988-4

Keywords