Skip to main content
Log in

A Novel Low Voltage Low Power High Linearity Self-biasing Current-reuse Up-conversion Mixer

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a new complementary metal oxide semiconductor (CMOS) low-voltage low-power current-reuse up-conversion mixer using Chartered \(0.18\,\upmu \hbox {m}\) CMOS process for radio frequency transmitter applications is presented. A novel self-biasing current-reuse (SBCR) technique is adopted to achieve more ideal conversion gain (CG) and third-order intermodulation intercept point \((\hbox {IIP}_{3})\) in the transconductance stage with minimal additional power consumption, which perfects the mixer than conventional Gilbert mixer. As the new SBCR technique employed in the mixer, the post-layout simulation results demonstrate that the SBCR-mixer features about 13 dB CG with 0 dBm local oscillator (LO) power and port-to-port isolation better than 84 dB, while noise figure is 15.66 dB. The \(\hbox {IIP}_{3}\) and 1 dB compression point of the mixer are 7.78 dBm and \(-\)3.76 dBm at 1.41 mW power consumption from a 1 V supply voltage. The chip area is only \(0.70 \times \,0.72\,\hbox {mm}^{2}\) even including test pads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kraimia, H., Taris, T., Begueret, J., & Deval, Y. (2011). A 2.4 GHz ultra-low Power current-reuse bleeding mixer with resistive feedback. 18th IEEE international conference on electronics, circuits and systems, Beirut, pp. 488–491.

  2. Murad, S. A. Z., & Mohamad, S. M. (2012). Linearity improvement of 5.2-GHz CMOS up-conversion mixer for wireless applications. Microwave and Optical Technology Letters, 54, 923–925.

    Article  Google Scholar 

  3. Murad, S. A. Z., Shahimin, M. M., Pokharel, R. K., Kanaya, H., & Yoshida, K. (2011). A fully integrated CMOS Up-conversion mixer with input active Balun for wireless applications. 2011 IEEE Regional symposium on micro and nanoelectronics (RSM), Kota Kinabalu, pp. 112–116.

  4. Murad, S. A. Z., Ahmad, M. F., Mazalan, M., Shahimin, M. M., Rais, S. A. A., Norizan, M. N. (2011). A Design of 5.2 GHz CMOS Up-conversion Mixer with IF Input Active Balun. 2011 IEEE symposium on wireless technology and applications (ISWTA), Langkawi, pp. 1–4.

  5. Fan, X., Zhu, C., Zhang, L. (2009). A 2.4 GHz RF CMOS up-conversion mixer for wireless sensor networks nodes. WCSP 2009. International conference on wireless communications & signal processing, Nanjing, pp. 1–5.

  6. Tsai, T. M., & Lin, Y. S. (2012). 15.1 mW 60 GHz up-conversion mixer with 4.5 dB gain and 57.5 dB LO-RF isolation. Electronics Letters, 48, 844–845.

    Article  Google Scholar 

  7. Sun, X., Huang, F., Tang, X., Zhao, D. (2012). A 1.8-2.6 GHz RF CMOS Up-conversion mixer for wideband applications. 2012 IEEE MTT-S international microwave workshop series on millimeter wave wireless technology and applications(IMWS), Nanjing, pp. 1–4.

  8. Shi, L. X., Chen, C., Wu, J. H., & Zhang, M. (2012). A 1.5-V current mirror double-balanced mixer With 10-dBm IIP3 and 9.5-dB conversion gain. IEEE Transactions on Circuits and Systems-II: Express Briefs, 59, 204–208.

    Article  Google Scholar 

  9. Liang, K. H., & Chang, H. Y. (2011). 0.5-6GHz low-voltage low-power mixer using a modified cascode topology in 0.18 um CMOS technology. IET Microwaves, Antennas & Propagation, 5, 167–174.

    Article  Google Scholar 

  10. Parvizi, M., & Nabavi, A. (2009). Improved derivative superposition scheme for simultaneous second- and third-order distortion cancellation in LNAs. Electronics Letters, 45, 1323–1325.

    Article  Google Scholar 

  11. Parvizi, M., & Nabavi, A. (2010). Low-power highly linear UWB CMOS mixer with simultaneous second- and third-order distortion cancellation. Microelectronics Journal, 41, 1–8.

    Article  Google Scholar 

  12. He, S., & Saavedra, C. E. (2012). An ultra-low-voltage and low-power 2 subharmonic downconverter mixer. IEEE Transactions on Microwave Theory and Techniques, 60, 311–317.

    Article  Google Scholar 

  13. Karanicolas, A. N. (1996). A 2.7-V 900-MHz CMOS LNA and Mixer. IEEE Journal of Solid-State Circuits, 31, 1939–1944.

    Article  Google Scholar 

  14. Song, C., Lubecke, O. B., & Lo, I. (2013). 0.18 um CMOS wideband passive mixer. Microwave and Optical Technology Letters, 55, 23–27.

    Article  Google Scholar 

  15. Le, V. H., Nguyen, H. N., Lee, I. Y., & Han, S. K. (2011). A passive mixer for a wideband TV tuner. IEEE Transactions on Circuits and Systems II: Express Briefs, 58, 398–401.

    Article  Google Scholar 

  16. Vidojkovic, V., van der Tang, J., Leeuwenburgh, A., & van Roermund, A. H. M. (2005). A low-voltage folded-switching mixer in \(0.18-\mu \)m CMOS. IEEE Journal of Solid-State Circuits, 40, 1259–1264.

    Article  Google Scholar 

  17. Krcmar, M., & Boeck, G. (2010). A broadband folded Gilbert cell CMOS mixer. Analog Integrated Circuits and Signal Processing, 64, 39–44.

    Article  Google Scholar 

  18. Toole, B., Plett, C., & Cloutier, M. (2004). RF circuit implications of moderate inversion enhanced linear region in MOSFETs. IEEE Transactions on Circuitsand Systems I, 51(2), 319–327.

    Article  Google Scholar 

  19. Amirabadi, A., Chehelcheraghi, M., & Kamarei, M. (2011). High IIP3 and low-noise CMOS mixer using non-linear feedback technique. Circuits Systems and Signal Processing, 30, 721–739.

    Article  Google Scholar 

  20. Chen, J. D. (2011). A low-voltage high-linearity ultra-wideband down-conversion mixer in 0.18 um CMOS technology. Microelectronics Journal, 42, 113–126.

    Article  Google Scholar 

  21. Laha, S., & Kaya, S. (2013). Bias optimization of 2.4Ghz double gate MOSFET RF mixer. Analog Integrated Circuits and Signal Processing, 77, 529–537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lv Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wang, C. A Novel Low Voltage Low Power High Linearity Self-biasing Current-reuse Up-conversion Mixer. Wireless Pers Commun 80, 277–287 (2015). https://doi.org/10.1007/s11277-014-2008-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2008-4

Keywords