Skip to main content
Log in

Cooperative Spectrum Sensing Using Finite Demmel Condition Numbers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A novel and robust cooperative spectrum sensing scheme based on the exact distributions of Demmel Condition Number (DCN) of finite Wishart matrix is proposed in this paper. We also provide a new and simple method to determine the coefficient vector for the distribution of smallest eigenvalue, which is the key part in the generation of DCN distributions. A simple and exact expression of Cumulative Distribution Function of DCN for arbitrary matrix sizes is originally given to determine the theoretical threshold of the proposed spectrum sensing scheme.The simulations indicate that the proposed scheme can achieve better spectrum sensing performance comparing with conventional asymptotic methods based on infinite random matrix theory, and more importantly, the proposed algorithm is more robust against noise uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Wang, B., & Liu, K. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  3. Gavrilovska, Liljana, & Atanasovski, Vladimir. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59, 447–469.

  4. Cardoso, L. S., Debbah, M., Bianchi, P., & Najim, J. (2008). Cooperative spectrum sensing using random matrix theory. In Proceedings of IEEE ISWPC, Santorini, Greece (pp. 334–338).

  5. Zeng, Y., & Liang, Y.-C. (2009). Eigenvalue-based sectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793.

    Article  Google Scholar 

  6. Penna, F., Garello, R., & Spirito, M. (2009). Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in wishart matrices. IEEE Communications Letters, 13(7), 507–509.

    Article  Google Scholar 

  7. Nadler, B., Penna, F., & Garello. R. (2011). Performance of eigenvalue-based signal detectors with known and unknown noise level. In Proceedings of IEEE International Conference on Communications (ICC), Kyoto, Japan (pp. 1–5).

  8. Bianchi, P., Debbah, M., Maida, M., & Najim, J. (2011). Performance of statistical tests for single-source detection using random matrix theory. IEEE Transactions on Information Theory, 57(4), 2400–2419.

    Article  MathSciNet  Google Scholar 

  9. Zhang, W., Abreu, G., Inamori, M., & Sanada, Y. (2012). Spectrum sensing algorithms via finite random matrices. IEEE Transactions on Communications, 60(1), 164–175.

    Article  Google Scholar 

  10. Tulino, A. M., & Verdu, S. (2004). Random matrix theory and wireless communications. Hanover, MA, USA: Now Publishers Inc.

  11. Gotze, F., & Tikhomirov, A. (2004). Rate of convergence in probability to the marchenko–pastur law. Bernoulli, 10, 503–548.

    Article  MathSciNet  Google Scholar 

  12. Tracy, C., & Widom, H. (1996). On orthogonal and sympletic matrix ensembles. Communications of Mathematical, Physics, 177, 727–754.

    Article  MATH  MathSciNet  Google Scholar 

  13. Soshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. Journal of Statistical Physics, 108(5/6), 1033–1056.

    Article  MATH  MathSciNet  Google Scholar 

  14. Karoui, N. E. (2006). A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. The Annals of Probability, 34(6), 2077–2117.

    Article  MATH  MathSciNet  Google Scholar 

  15. Matthaiou, M., Mckay, M., Smith, P., & Nossek, J. (2010). On the condition number distribution of complex wishart matrices. IEEE Transactions on Communications, 58(6), 1705–1717.

    Article  Google Scholar 

  16. Demmel, J. W. (1988). The probability that a numerical analysis problem is difficult. Mathematics of Computation, 50(182), 449–480.

    Article  MATH  MathSciNet  Google Scholar 

  17. Edelman, A. (1992). On the distribution of a scaled condition number. Mathematics of Computation, 58, 185–190.

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhong, C., McKay, M., Ratnarajah, T., & Wong, K.-K. (2011). Distribution of the demmel condition number of wishart matrices. IEEE Transactions on Communications, 59(5), 1309–1320.

    Article  Google Scholar 

  19. Wei, L., McKay, M., & Tirkkonen, O. (2011). Exact demmel condition number distribution of complex wishart matrices via the mellin transform. IEEE Communications Letters, 15(2), 175–177.

    Article  Google Scholar 

  20. Besson, O., & Scharf, L. L. (2006). CFAR matched direction detector. IEEE Transactions on Signal Processing, 54(7), 2840–2844.

    Article  Google Scholar 

  21. Zeng, Y., Liang, Y., Peh, E. C. Y., & Hoang, A. T. (2009). Cooperative covariance and eigenvalue based detections for robust sensing. In IEEE Global Telecommunications Conference, GLOBECOM, Honolulu, HI (pp. 1–6).

  22. Dighe, P., Mallik, R., & Jamuar, S. (2003). Analysis of transmit-receive diversity in rayleigh fading. IEEE Transactions on Communications, 51(4), 694–703.

    Article  Google Scholar 

  23. Park, C. S., & Lee, K. B. (2008). Statistical multimode transmit antenna selection for limited feedback mimo systems. IEEE Transactions on Wireless Communications, 7(11), 4432–4438.

    Article  Google Scholar 

  24. James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. The Annals of Mathematical Statistics, 35(2), 475–501.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Natural Science Foundation of China (Grant No. 61371110), the Doctoral Fund of Ministry of Education of China (Grant No. 20130131120024), Independent Innovation Foundation of Shandong University (Grant No. 2012HW010), Outstanding Young Scientist Research Award Foundation of Shandong Province (Grant No. BS2013DX004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Zhang, W., Xiong, H. et al. Cooperative Spectrum Sensing Using Finite Demmel Condition Numbers. Wireless Pers Commun 80, 335–346 (2015). https://doi.org/10.1007/s11277-014-2012-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2012-8

Keywords

Navigation