Skip to main content

Advertisement

Log in

Min–Max Energy-Efficiency Analysis of Green Multiuser Wireless Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose an optimal power allocation scheme that minimizes the energy per bit of worst user (i.e., the user with highest energy per bit) in a multiuser wireless communication network. The problem of determining energy efficient power allocation to improve the worst user is a constrained non-convex nonlinear fractional programming problem. We propose an iterative energy efficient power allocation algorithm that guarantees optimal solution. We use parametric equivalent formulation to get the optimal solution. Numerical solutions obtained using simulations are presented and compared with equal power allocation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Fehske, A., et al. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine.

  2. Herault, L., et al. (2009). Green communications: A global environmental challenge. In: Proceedings of 12th international symposium on wireless personal multimedia communications.

  3. Han, C., et al. (2011). Green radio: Radio techniques to enable energy efficient wireless networks. IEEE Communications Magazine, 49(6), 46–54.

    Article  Google Scholar 

  4. Wang, B., et al. (2011). Green wireless communications: A time-reversal paradigm. IEEE Journal on Selected Areas in Communications, 29(8), 1698–1710.

    Article  Google Scholar 

  5. Xiong, C., Li, G. Y., Zhang, S., Chen, Y., & Xu, S. (2011). Energy-and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions On Wireless Communications, 10(11), 3874–3886.

    Article  Google Scholar 

  6. Quittek, J., Christensen, K., & Nordman, B. (2011). Energy-efficient networks IEEE Network Magazine.

  7. Koutitas, G. (2010). Green network planning of single frequency networks. IEEE Transactions on Broadcasting, 56(4), 541–550.

  8. Son, K., Kim, H., Yi, Y., & Krishnamachari, B. (2011). Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. IEEE Journal on Selected Areas in Communications, 29(8), 1525–1536.

  9. Miao, G., Himayat, N., Li, G. Y., & Talwar, S. (2012). Low-complexity energy-efficient scheduling for uplink OFDMA. IEEE Transactions on Communications, 60(1), 112–120.

  10. Network and telecom equipment energy and performance assessment, test procedure and measurement methodology. December 2010, ECR Initiative 2010. http://www.ecrinitiative.org. Accessed August 2012.

  11. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communication, 11, 3292–3304.

    Article  Google Scholar 

  12. Prabhu, R., & Daneshrad, B.(2010). Energy-efficient power loading for a MIMO-SVD system and its performance in flat fading. In Proceedings of IEEE globalcom.

  13. Isheden, C., & Fettweis, G. P.(2011) Energy-efficient link adaptation with transmitter CSI. In Proceedings of IEEE WCNC.

  14. Charnes, A., & Cooper, W. (1962). Programming with linear fractional functionals. Naval Research logistics quarterly, 9(3-4), 181–186 .

  15. Dinkelbach, W. (1967). On the nonlinear fractional programming. Journal Managemet Sciences.

  16. Crouzeix, J.-P., & Ferland, J. A. (1991). Algorithms for generalized fractional programming. Mathematical Programming, 52(1), 191–207.

    Article  MATH  MathSciNet  Google Scholar 

  17. Goldsmith, Andrea. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagan Anpalagan.

Additional information

This work was supported in part by NSERC Discovery Grants.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Proof

Before the proof of theorem 1, we first present some observations and remarks. \(\square \)

Remark 1

  1. (a).

    It is easy to observe that both \(\mathcal {S}\) and \(\mathcal {K}\) are closed and bounded, which means \(\mathcal {S}\) and \(\mathcal {K}\) are compact.

  2. (b).

    Since \(p_k \ge 0, \forall k\in \mathcal {K}\), \(\theta \) will always be non-negative.

  3. (c).

    Due to the positivity of \(f_d\left( p_k\right) \), the function \(F(\theta )\) is decreasing with \(\theta \).

Proposition 1

If both \(\mathcal {S}\) and \(\mathcal {K}\) are compact, then \(F(\theta ) < 0 \) if and only if \(\theta > \theta ^*\).

Proof

If \(F(\theta ) < 0\) then there exists \(\varvec{\hat{p}} \in \mathcal {S}\) such that \(f_n\left( \hat{p}_k\right) -\theta f_d\left( \hat{p}_k\right) <0, \forall k\in \mathcal {K}\). Hence, \(\theta > \underset{k\in \mathcal {K}}{\text {max}} \; \frac{f_n\left( \hat{p}_k\right) }{f_d\left( \hat{p}_k\right) } \ge \theta ^*\). Conversely, if \(\theta > \theta ^*\), then \(\theta ^* = \underset{k\in \mathcal {K}}{\text {max}} \; \frac{f_n\left( p^*_k\right) }{f_d\left( p^*_k\right) } < \theta \).This implies that \(f_n\left( p^*_k\right) - \theta f_d\left( p^*_k\right) < 0, \forall k\in \mathcal {K}\), indicating that \(F(\theta ) < 0\). \(\square \)

Remark 2

For all \(t\ge 1\) and \(\varvec{p}\in \mathcal {S}\), \(\theta ^t=\underset{k\in \mathcal {K}}{\text {max}} \, \frac{f_n(p_k^t)}{f_d(p_k^t)} \ge \theta *\). Hence, from Lemma 1, \(F(\theta )\le 0\).

Lemma 2

The sequence \(\{\theta ^t\}\) is monotonically decreasing.

Proof

Let \(\xi \) be the index used to specify \(\theta ^{t+1}\), that is \(\theta ^{t+1}=\underset{k\in \mathcal {K}}{\text {max}} \, \frac{f_n(p_k^t)}{f_d(p_k^t)}=\frac{f_n(p_{\xi }^t)}{f_n(p_{\xi }^t)}\). Then

$$\begin{aligned} F(\theta ^t)&= \underset{k\in \mathcal {K}}{\text {max}} f_n\left( p_k^t\right) -\theta ^t f_d\left( p_k^t\right) \nonumber \\&\ge f_n\left( p_{\xi }^t\right) -\theta ^t f_d\left( p_{\xi }^t\right) \\&= \theta ^{t+1}f_d\left( p_{\xi }^t\right) -\theta ^t f_d\left( p_{\xi }^t\right) \nonumber \\&= (\theta ^{t+1}-\theta ^t) f_d\left( p_{\xi }^t\right) \nonumber \end{aligned}$$
(6)

Hence, due to the positivity of \(f_d\left( p_{\xi }^t\right) \), \((\theta ^{t+1}-\theta ^t) \le \frac{F(\theta ^t)}{f_d\left( p_{\xi }^t\right) } < 0\). \(\square \)

Let us define \(f_d^{min}= \underset{k\in \mathcal {K}}{\text {min}}\, f_d(p_k^t)\) and \(f_d^{max}=\underset{k\in \mathcal {K}}{\text {max}} \, f_d(p_k^t)\).

Lemma 3

If \(\theta ^t \in \mathcal {R}\) and \(\varvec{p}\) is the optimal solution of (4) then

$$\begin{aligned}&F(\theta ) \le F(\theta ^t)- f_d^{min}(\theta -\theta ^t) \quad {\textit{if}} \ (\theta > \theta ^t)\nonumber \\&F(\theta ) \le F(\theta ^t)- f_d^{max}(\theta -\theta ^t) \quad {\textit{if}} \ (\theta < \theta ^t) \end{aligned}$$
(7)

Proof

For any \(\theta ^t \in \mathcal {R}\)

$$\begin{aligned} F(\theta ^t)&= \underset{\varvec{p}\in \mathcal {S},\theta }{\text {min}} \, \underset{k\in \mathcal {K}}{\text {max}} \, f_n\left( p_k^t\right) -\theta f_d\left( p_k^t\right) \nonumber \\&\le \underset{k\in \mathcal {K}}{\text {max}} \, f_n\left( p_k^t\right) -\theta f_d\left( p_k^t\right) \end{aligned}$$
(8)

Let the maximum of (8) be attained at index \(\xi \in \mathcal {K}\), then

$$\begin{aligned} F(\theta )&\le f_n\left( p_{\xi }^t\right) -\theta f_d\left( p_{\xi }^t\right) \nonumber \\&= f_n\left( p_{\xi }^t\right) -\theta f_d\left( p_{\xi }^t\right) +\theta ^t f_d\left( p_{\xi }^t\right) -\theta ^t f_d\left( p_{\xi }^t\right) \\&= F(\theta ^t)-(\theta -\theta ^t)f_d\left( p_{\xi }^t\right) \nonumber \end{aligned}$$
(9)

It is easy to observe (7) from the definition of \(f_d^{min}\) and \(f_d^{max}\). \(\square \)

Remark 3

If \(|\mathcal {S}|=1\), we have \(f_d^{min}=f_d^{max}=\hat{f}\). Then (7) implies that \(-\hat{f}\) is a sub-gradient of \(F\) at \(\theta \).

Let, \(\varvec{p}^*\) be the optimal solution of (1). We can rewrite min–max problem as:

$$\begin{aligned} \theta ^* = \underset{\varvec{p}\in \mathcal {S}}{\text {min}} \, \underset{k\in \mathcal {K}}{\text {max}} \qquad \frac{f_n\left( p_k\right) /f_d\left( p^*_k\right) }{f_d\left( p_k\right) /f_d\left( p^*_k\right) } \end{aligned}$$
(10)

the associated parametric problem is,

$$\begin{aligned} \bar{F}(\theta ^*) = \underset{\varvec{p}\in \mathcal {S}}{\text {min}} \, \underset{k\in \mathcal {K}}{\text {max}} \qquad \frac{f_n\left( p_k\right) -\theta f_d\left( p_k\right) }{f_d\left( p^*_k\right) } \end{aligned}$$
(11)

From Lemma 3, we have

$$\begin{aligned}&\bar{F}(\theta ^*) \le \bar{F}(\theta ^t)- \Gamma _d^{min}(\theta -\theta ^t) \quad {\textit{if}} \ (\theta > \theta ^t)\nonumber \\&\bar{F}(\theta ^*) \le \bar{F}(\theta ^t)- \Gamma _d^{max}(\theta -\theta ^t) \quad {\textit{if}} \ (\theta < \theta ^t) \end{aligned}$$
(12)

where \(\Gamma _d^{min}= \underset{k\in \mathcal {K}}{\text {min}}\, f_d(p^*_k)/f_d(p^*_k)=1=\Gamma _d^{max}=\underset{k\in \mathcal {K}}{\text {max}} \, f_d(p^*_k)/f_d(p^*_k)\). From Lemma 3 and Remark 3, it is easy to observe that the Algorithm 1 reduces to a Newton method in the neighborhood of \(\theta ^*\) and rate of convergence is at least linear as noticed in [16].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, M., Anpalagan, A. & Jaseemuddin, M. Min–Max Energy-Efficiency Analysis of Green Multiuser Wireless Systems. Wireless Pers Commun 80, 347–356 (2015). https://doi.org/10.1007/s11277-014-2013-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2013-7

Keywords

Navigation