Skip to main content
Log in

Total Data Collection Algorithm Based on Estimation Model for Wireless Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the distributed estimation of an unknown target parameter through a power-constrained wireless sensor networks (WSN) including clusters is investigated. Data collection algorithm includes routing and scheduling. In WSN, sensor nodes observe the environmental events, perform a local data compression and at the first step, forward the results to a cluster head (here it is called fusion center). In this study, cluster head (CH) provides a final estimation of the observed target parameter using collected data. Then CH sends the estimation results to the sink. The main purpose of the proposed algorithm is to extend network lifetime while the target parameter is estimated with the desirable precision. To achieve this goal, following three objects are regarded: (1) proposing estimation model for different target parameter types, (2) proposing intra cluster scheduling/routing algorithm for collecting data inside the clusters according to the estimation model requirements and (3) proposing inter cluster routing in order to transmit the estimation process results to the sink. According to the inherent characteristics of WSN applications, we consider the unknown target parameter as a random variable with a known prior distribution function. Based on the application, different prior functions are admissible. In this paper we investigate the impact of different prior functions on estimation process performance. Simulation results show that the proposed algorithm achieves its goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Tubaishat, M., & Madria, S. (2003). Sensor networks: An overview. IEEE Potentials 22(2), 23.

  2. Kumar, S., Shepherd, D., & Zhao, F. (2002). Collaborative signal and information processing in micro-sensor networks. IEEE Signal Processing Magazine, 19, 13–14.

  3. Chang, J. H., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions on Networking, 12(4), 609–619.

  4. Cohen, K., & Leshem, A. (2010). A time-varying opportunistic approach to lifetime maximization of wireless sensor networks. IEEE Transactions on Signal Processing, 58(10), 5307–5319.

    Article  MathSciNet  Google Scholar 

  5. Ayanoglu, E. (1990). On optimal quantization of noisy sources. IEEE Transactions on Information Theory, 36(6), 1450–1452.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertrand, A., Szurley, J., Ruckebusch, P., Moerman, I., & Moonen, M. (2012). Efficient calculation of sensor utility and sensor removal in wireless sensor networks for adaptive signal estimation and beamforming. IEEE Transaction on Signal Processing, 60, 5857–5869.

    Article  MathSciNet  Google Scholar 

  7. Aysal, T. C., & Barner, K. E. (2008). Constrained decentralized estimation over noisy channels for sensor networks. IEEE Transactions on Signal Proceesing, 56(4), 1398–1410.

    Article  MathSciNet  Google Scholar 

  8. Huang, Y., & Hua, Y. (2012). On energy for progressive and consensus estimation in multihop sensor networks. IEEE Signal Processing Magazine, 59(8), 3863–3875.

    Article  MathSciNet  Google Scholar 

  9. Akyildiz, I. F., Su, W., Sankarsubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.

    Article  Google Scholar 

  10. Luo, Z. Q. (2005). Universal decentralized estimation in a bandwidth constrained sensor network. IEEE Transactions on Information Theory, 51(6), 2210–2219.

  11. Chaudhary, M., & Vandendorpe, L. (2012). Power constrained linear estimation in wireless sensor networks with correlated data and digital modulation. IEEE Transactions on Signal Processing, 60(2), 570–584.

  12. Yuh-Ren, T., & Cheng-Ju, C. (2011). Cooperative information aggregation for distributed estimation in wireless sensor networks. IEEE Transaction on Signal Processing, 59(8), 3876–3888.

    Article  Google Scholar 

  13. Bertrand, A., & Moonen, M. L. (2011). Distributed adaptive estimation of node-specific signals in wireless sensor networks with a tree topology. IEEE Transactions on Signal Processing, 59(5), 2196–2210.

  14. Cui, S., Goldsmith, A., & Bahai, A. (2004). Joint modulation and multiple access optimization under energy constraints. In Proceeding of the IEEE global telecommunication conference (pp. 151–155), Dallas, Texas.

  15. Roseveare, N., & Natarajan, B. (2012). Distributed tracking with energy management in wireless sensor networks. IEEE Transactions on Aerospace and Electronic Systems, 48, 3494–3511.

    Article  Google Scholar 

  16. Behbahani, A. S., Eltawil, A. M., & Jafarkhani, H. (2012). Linear estimation of correlated vector sources for wireless sensor networks with fusion center. IEEE Wireless Communications Letters, 1, 400–403.

    Article  Google Scholar 

  17. Chen, Y., & Zhao, Q. (2005). On the lifetime of wireless sensor networks. IEEE Communication Letter, 9(11), 976–978.

    Article  Google Scholar 

  18. Chen, Y., & Zhao, Q. (2007). An integrated approach to energy-aware medium access for wireless sensor networks. IEEE Transactions Signal Processing, 55(7), 3429–3444.

    Article  Google Scholar 

  19. Mohajerzadeh, A. H., Yaghmaee, M. H., & Fakoor, V. (2013). Optimized task scheduling for estimation in wireless sensor networks. International Journal of Information & Communication Technology Research, 5(2), 55–62.

  20. Li, S., Marano, V., & Matta, P. (2008). Distributed estimation in large wireless sensor network via a locally optimum approach. IEEE Transactions Signal Processing, 56(2), 748–756.

    Article  Google Scholar 

  21. Cenedese, A., Ortolan, G., & Bertinato, M. (2010). Low-density wireless sensor networks for localization and tracking in critical environments. IEEE Transactions on Vehicular Technology, 59(6), 2951–2962.

    Article  Google Scholar 

  22. Mergen, G., & Tong, L. (2006). Type-based estimation over multiaccess channels. IEEE Transactions Signal Processing, 54(2), 613–626.

    Article  Google Scholar 

  23. Chen, H. (2010). Performance-energy tradeoffs for decentralized estimation in a multihop sensor network. IEEE Sensors Journal, 10(8), 1304–1310.

  24. Li, J., & AlRegib, G. (2009). Network lifetime maximization for estimation in multihop wireless sensor networks. IEEE Transactions on Signal Processing, 57(7), 2456–2466.

  25. Cheng, C. T., Tse, C. K., & Lao, F. C. M. (2010). An energy-aware scheduling scheme for wireless sensor networks. IEEE Transactions on Vehicular Technology, 59(7), 3427–3444.

  26. Liu, F., Tsui, C.-Y., & Zhang, Y. J. (2010). Joint routing and sleep scheduling for lifetime maximization of wireless sensor networks. IEEE Transactions on Wireless Communications, 9(7), 2258–2267.

  27. Wu, Y., Li, X.-Y., Liu, Y., & Lou, W. (2010). Energy-efficient wake-up scheduling for data collection and aggregation. IEEE Transactions on Parallel and Distributed Systems, 21(2), 275–287.

  28. Incel, Z. D., Ghosh, A., Krishnamachari, B., & Chintalapudi, K. (2012). Fast data collection in tree-based wireless sensor networks. IEEE Transactions on Mobile Computing, 11(1), 86–99.

  29. Ryu, J., Lee, C. G., Kwon, T. T., & Han, J. (2009). Combined scheduling and routing for deterministic guarantee of end-to-end deadlines in cell structured sensor networks. IEEE Sensors Journal, 9(10), 1291–1301.

  30. Karkvandi, H. R., Pecht, E., & Yadid-Pecht, O. (2011). Effective lifetime-aware routing in wireless sensor networks. IEEE Sensors Journal, 11(12), 3359–3367.

  31. Cohen, R., & Kapchits, B., (2009). An optimal wake-up scheduling algorithm for minimizing energy consumption while limiting maximum delay in a mesh sensor network. IEEE/ACM Transactions on Networking, 17(2), 570–581.

  32. Wang, H., Yang, Y., Ma, M., He, J., & Wang, X. (2009). Network lifetime maximization with cross-layer design in wireless sensor networks. IEEE Transactions Wireless on Communications, 7(10), 3759–3768.

    Article  Google Scholar 

  33. Cassela, G., & Berger, R. (2002). Statistical inference. Duxbury: Wadsworth Group.

    Google Scholar 

  34. Gross, D., Shortle, J. F., Thompson, J. M., & Harris, C. M. (2008). Fundamentals of queuing theory (4th ed.). New York: Wiley.

    Book  Google Scholar 

  35. Chaudhary, M. H., & Vandendorpe, L. (2012). Power constrained linear estimation in wireless sensor networks with correlated data and digital modulation. IEEE Transaction on Signal Processing, 60(2), 570–584.

  36. Bertrand, A., & Moonen, M. (2011). Distributed adaptive estimation of node-specific signals in wireless sensor networks with a tree topology. IEEE Transaction on Signal Processing, 59(5), 2196–2210.

  37. Chen, M., Leung, C., Mao, S., Xiao, Y., & Chlamtac, I. (2009). Hybrid geographic routing for flexible energy-delay trade-off. IEEE Transaction on Vehicular Technology, 58, 4976–4988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Mohajerzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohajerzadeh, A.H., Yaghmaee, M.H. & Fakoor, V. Total Data Collection Algorithm Based on Estimation Model for Wireless Sensor Network. Wireless Pers Commun 81, 745–778 (2015). https://doi.org/10.1007/s11277-014-2156-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2156-6

Keywords

Navigation