Skip to main content
Log in

Cognitive Radio Ad-Hoc Network Architectures: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Combating the growing necessity of radio spectrum, which is a limited natural resource, proper utilization of the radio spectrum is a must. Cognitive radio network (CRN) plays a vibrant role to solve this spectrum scarcity problem. Cognitive radio uses an open spectrum allocation technique to make more efficient utilization of the wireless radio spectrum and reduces the bottleneck on the frequency bands. Thus, accessible spectrum information is required for communication in CRN, which can be acquired by using spectrum database or by spectrum sensing. In addition, a robust architecture with appropriate communication protocol is preconditioned in the deployment of CRN. The state of the art of cognitive radio ad-hoc network architecture is surveyed in this paper, where the paper specifies the formation mechanisms and performance evaluations of the studied architectures. The reviewed papers have addressed some vital issues for the concrete deployment of cognitive radio ad-hoc network; however, there remain some issues that need to be addressed. Thus, this paper conveys a thorough and abstract understanding of cognitive radio ad-hoc network architecture, and also points out some open research issues in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6, 13–18.

    Article  Google Scholar 

  2. FCC. (2003). Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. FCC Document ET Docket, No. 03-108, December 2003.

  3. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50, 2127–2159.

    Article  MATH  Google Scholar 

  4. Chen, K.-C., Peng, Y.-J., Prasad, N., Liang, Y.-C., & Sun, S. (2008). Cognitive radio network architecture: Part I—general structure. Presented at the Proceedings of the 2nd international conference on Ubiquitous information management and communication, Suwon, Korea.

  5. Krishnamurthy, S., Thoppian, M., Venkatesan, S., Prakash, R. (2005). Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. In Milcom 2005–2005 IEEE military communications conference, Vols. 1–5, pp. 455–460.

  6. Zhao, Y. P., Mao, S. W., Neel, J. O., & Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97, 642–659.

    Article  Google Scholar 

  7. Wang, B. B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5, 5–23.

    Article  Google Scholar 

  8. Liang, Y. C., Chen, K. C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60, 3386–3407.

    Article  Google Scholar 

  9. Youping, Z., Morales, L., Gaeddert, J., Bae, K. K., Jung-Sun, U., Reed, J. H. (2007). Applying radio environment maps to cognitive wireless regional area networks. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, 2007. DySPAN 2007, pp. 115–118.

  10. I. W. Group. (2008). IEEE P802. 22/D1. 0 draft standard for wireless regional area networks part 22: cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: policies and procedures for operation in the TV bands. In IEEE docs, pp. 22–06.

  11. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11, 116–130.

    Article  Google Scholar 

  12. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46, 40–48.

    Article  Google Scholar 

  13. Yongle, W., Beibei, W., Liu, K. J. R., & Clancy, T. C. (2008). A multi-winner cognitive spectrum auction framework with collusion-resistant mechanisms. In 3rd IEEE symposium on new Frontiers in dynamic spectrum access networks, 2008. DySPAN 2008, pp. 1–9.

  14. Chen, T., Zhang, H., Maggio, G. M., & Chlamtac, I. (2007). Topology management in CogMesh: A cluster-based cognitive radio mesh network. In IEEE international conference on communications, 2007. ICC’07, pp. 6516–6521.

  15. Bouabdallah, N., Ishibashi, B., & Boutaba, R. (2011). Performance of cognitive radio-based wireless mesh networks. IEEE Transactions on Mobile Computing, 10, 122–135.

    Article  Google Scholar 

  16. Han, C., Wang, J., Yang, Y. L., & Li, S. Q. (2008). Addressing the control channel design problem: OFDM-based transform domain communication system in cognitive radio. Computer Networks, 52, 795–815.

    Article  MATH  Google Scholar 

  17. Čabrić, D., Mishra, S. M., Willkomm, D., Brodersen, R., & Wolisz, A. (2005). A cognitive radio approach for usage of virtual unlicensed spectrum. In 14th IST mobile and wireless communications, summit.

  18. Zhao, J., Zheng, H., & Yang, G.-H. (2005). Distributed coordination in dynamic spectrum allocation networks. In 2005 First IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005, pp. 259–268.

  19. Kondareddy, Y. R., Agrawal, P., & Synchronized, M. A. C. (2008). Protocol for multi-hop cognitive radio networks. In IEEE international conference on communications, 2008. ICC’08, pp. 3198–3202.

  20. Shao-Yu, L., Chih-Cheng, T., & Kwang-Cheng, C. (2008) Protocols, carrier sensing based multiple access, for cognitive radio networks. In IEEE international conference on communications, 2008. ICC’08, pp. 3208–3214.

  21. Cormio, C., & Chowdhury, K. R. (2010). Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping. Ad Hoc Networks, 8, 430–438.

    Article  Google Scholar 

  22. Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physical Communication, 4, 26–39.

    Article  Google Scholar 

  23. Muzahidul Islam, A. K. M., Uchida, J., Chen, W., & Wada, K. (2012). A better dynamic cluster-based structure wireless sensor network for efficient routing. International Journal of Innovative Computing, Information and Control (IJICIC), 9, 4085–4099.

  24. De Guglielmo, D., Anastasi, G., & Seghetti, A. (2014). From IEEE 802.15. 4 to IEEE 802.15. 4e: A step towards the internet of things. In Advances onto the internet of things, (pp. 135–152) Berlin: Springer.

  25. Sichitiu, M. L., & Ramadurai, V. (2004). Localization of wireless sensor networks with a mobile beacon. IEEE International Conference on Mobile Ad-hoc and Sensor Systems, 2004, 174–183.

    Article  Google Scholar 

  26. Villanueva, M. J., Calafate, C. T., Torres, Á., Cano, J., Cano, J.-C., & Manzoni, P. (2013). Seamless MANET autoconfiguration through enhanced 802.11 beaconing. Mobile Information Systems, 9, 19–35.

    Article  Google Scholar 

  27. Singh, S. K., Singh, M., & Singh, D. (2010). Routing protocols in wireless sensor networks—a survey. International Journal of Computer Science & Engineering Survey (IJCSES), 1, 63–83.

    Article  Google Scholar 

  28. Gulati, M. K., & Kumar, K. (2012). QoS routing protocols for mobile ad hoc networks: A survey. International Journal of Wireless and Mobile Computing, 5, 107–118.

    Article  Google Scholar 

  29. Pešović, U. M., Mohorko, J. J., Benkič, K., & Čučej, Ž. F. (2010). Single-hop vs. Multi-hop-Energy efficiency analysis in wireless sensor networks. In 18th Telecommunications Forum, TELFOR.

  30. Zhao, Q., Qin, S., & Wu, Z. (2011). Self-organize network architecture for multi-agent cognitive radio systems. In International conference on cyber-enabled distributed computing and knowledge discovery (CyberC), pp. 515–518.

  31. Baddour, K. E., Ureten, O., & Willink, T. J. (2011). A distributed message-passing approach for clustering cognitive radio networks. Wireless Personal Communications, 57, 119–133.

    Article  Google Scholar 

  32. Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315, 972–976.

    Article  MATH  MathSciNet  Google Scholar 

  33. Guo, C., Peng, T., Xu, S. Y., Wang, H. M., & Wang, W. B. (2009). Cooperative spectrum sensing with cluster-based architecture in cognitive radio networks. 2009 IEEE Vehicular Technology Conference, 1–5, 445–449.

    Google Scholar 

  34. Zhang, J.-Z., Wang, F., Yao, F.-Q., Zhao, H.-S., & Li, Y.-S. (2010). Cluster-based distributed topology management in cognitive radio ad hoc networks. In 2010 International Conference on Computer Application and System Modeling (ICCASM), pp. V10-544–V10-548.

  35. Talay, A. C., & Altilar, D. T. (2011). United nodes: Cluster-based routing protocol for mobile cognitive radio networks. IET Communications, 5, 2097–2105.

    Article  Google Scholar 

  36. Asterjadhi, A., Baldo, N., & Zorzi, M. (2010). A cluster formation protocol for cognitive radio ad hoc networks. In Wireless conference (EW), 2010 European, pp. 955–961.

  37. Chen, T., Zhang, H. G., Maggio, G. M., & Chlamtac, I. (2007). CogMesh: A cluster-based cognitive radio network. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, Vols. 1 and 2, pp. 168–178.

  38. Tang, C.-C., Ssu, K.-F., & Yang, C.-H. (2013). A cluster-based link recovery mechanism for spectrum aware on-demand routing in cognitive radio ad hoc networks. In Advances in intelligent systems and applications, (Vol. 1, pp. 601–610). Berlin: Springer.

  39. Lazos, L., Liu, S., & Krunz, M. (2009). Spectrum opportunity-based control channel assignment in cognitive radio networks. In 6th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2009. SECON’09, pp. 1–9.

  40. Zeng, Y., Mittal, N., Venkatesan, S., & Chandrasekaran, R. (2010). Fast neighbor discovery with lightweight termination detection in heterogeneous cognitive radio networks. In 2010 ninth international symposium on parallel and distributed computing (ISPDC), pp. 149–156.

  41. Xin, C. S., & Cao, X. J. (2009). A cognitive radio network architecture without control channel. Globecom 2009–2009 IEEE global telecommunications conference, Vols. 1–8, pp. 796–801.

  42. Choi, N., Patel, M., Venkatesan, S. (2006). A full duplex multi-channel MAC protocol for multi-hop cognitive radio networks, 2006 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, pp. 99–103.

  43. Sreesha, A. A., Somal, S., & Lu, I. T. (2011). Cognitive radio based wireless sensor network architecture for smart grid utility. In Systems, applications and technology conference (LISAT). 2011 IEEE long Island, pp. 1–7.

  44. Ghosh, C., & Agrawal, D. P. (2007). ROPAS: Cross-layer cognitive architecture for wireless mobile adhoc networks. In 2007 2nd international conference on cognitive radio oriented wireless networks and communications, pp. 514–518.

  45. Htike, Z., & Hong, C. S. (2013). Neighbor discovery for cognitive radio ad hoc networks. In Proceedings of the 7th international conference on ubiquitous information management and communication, p. 102.

  46. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  47. Bahl, P., Chandra, R., Moscibroda, T., Murty, R., & Welsh, M. (2009). White space networking with wi-fi like connectivity. ACM SIGCOMM Computer Communication Review, 39, 27–38.

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by Malaysia-Japan International Institute of Technology (MJIIT) Research Grant with Vote No. 4J044 and GUP TIER 1, the research grant of Universiti Teknologi Malaysia (UTM) with Vote No. 05H61 for the year 2014 to 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafees Mansoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, N., Muzahidul Islam, A.K.M., Zareei, M. et al. Cognitive Radio Ad-Hoc Network Architectures: A Survey. Wireless Pers Commun 81, 1117–1142 (2015). https://doi.org/10.1007/s11277-014-2175-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2175-3

Keywords

Navigation