Skip to main content
Log in

Power Allocation Based on Finite-Horizon Optimization for Data Transmission in Vehicle-to-Roadside Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we study the power allocation strategy in a drive-thru scenario, where several access points are installed along the highway to provide Internet services to vehicles on the highway. We consider single-hop vehicle-to-roadside communications for a vehicle that aims to upload data within a hard deadline, where the bandwidth allocated to it is time-varying, and the size of the data is known upon it enters the area. The data bits over a time slot are correctly received if the instantaneous channel capacity \(r_t\) is greater than or equal to a threshold \(R_t\), and corrupted otherwise. The vehicle has to consume an amount of transmission powers for data transmission according to the power consumption at each time slot no matter whether the data bits are correctly received or not. The target is to complete the transmission of the traffic demand volume with the minimal cost. First, we consider an optimal slotted power allocation strategy with random vehicular traffic arrivals. We formulate it as a finite-horizon sequential power allocation problem. Then we solve the problem using dynamic programming and find the optimal power allocation strategy. The existence of the optimal value of the cost-to-go function is proven. Simulation results show that our proposed strategy achieves less cost than the heuristic strategy. The impacts of different deadlines, traffic demand volumes, mean vehicle speeds, and outage probabilities on total cost are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here cost does not mean real money transfer. It is referred to the disutility of a mobile terminal’s energy consumption and data transmission.

References

  1. Hartenstein, H., & Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, 46(6), 164–171.

    Article  Google Scholar 

  2. Zhuang, Y., Pan, J., Viswanathan, V., & Cai, L. (2012). On the uplink mac performance of a drive-thru internet. IEEE Transactions on Vehicular Technology, 61(4), 1925–1935.

    Article  Google Scholar 

  3. Luan, T. H., Ling, X., & Shen, X. (2012). Mac in motion: Impact of mobility on the mac of drive-thru internet. IEEE Transactions on Mobile Computing, 11(2), 305–319.

    Article  Google Scholar 

  4. Zhang, Y., Zhao, J., & Cao, G. (2007). On scheduling vehicle-roadside data access. In Proceedings of the fourth ACM international workshop on vehicular ad hoc networks, ACM (pp. 9–18).

  5. Alcaraz, J. J., Vales-Alonso, J., & Garcia-Haro, J. (2011). Link-layer scheduling in vehicle to infrastructure networks: An optimal control approach. IEEE Journal on Selected Areas in Communications, 29(1), 103–112.

    Article  Google Scholar 

  6. Asefi, M., Mark, J. W., & Shen, X. (2012). A mobility-aware and quality-driven retransmission limit adaptation scheme for video streaming over vanets. IEEE Transactions on Wireless Communications, 11(5), 1817–1827.

    Article  Google Scholar 

  7. Khabazian, M., & Ali, M. (2008). A performance modeling of connectivity in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(4), 2440–2450.

    Article  Google Scholar 

  8. Karamad, E., & Ashtiani, F. (2008). A modified 802.11-based mac scheme to assure fair access for vehicle-to-roadside communications. Computer Communications, 31(12), 2898–2906.

    Article  Google Scholar 

  9. Pan, M., Li, P., & Fang, Y. (2012). Cooperative communication aware link scheduling for cognitive vehicular networks. IEEE Journal on Selected Areas in Communications, 30(4), 760–768.

    Article  Google Scholar 

  10. Zhang, H., Ma, Y., Yuan, D., & Chen, H.-H. (2011). Quality-of-service driven power and sub-carrier allocation policy for vehicular communication networks. IEEE Journal on Selected Areas in Communications, 29(1), 197–206.

    Article  Google Scholar 

  11. Cheung, M. H., Hou, F., Wong, V. W., & Huang, J. (2012). Dora: Dynamic optimal random access for vehicle-to-roadside communications. IEEE Journal on Selected Areas in Communications, 30(4), 792–803.

    Article  Google Scholar 

  12. Wu, Y., & Tsang, D. (2009). Dynamic rate allocation, routing and spectrum sharing for multi-hop cognitive radio networks. In IEEE International Conference on Communications Workshops, 2009. ICC Workshops 2009 (pp. 1–6). IEEE.

  13. Chen, S., Sinha, P., Shroff, N., & Joo, C. (2011). Finite-horizon energy allocation and routing scheme in rechargeable sensor networks. In INFOCOM, 2011 Proceedings IEEE (pp. 2273–2281). IEEE

  14. Gao, L., & Cui, S. (2009). Power and rate control for delay-constrained cognitive radios via dynamic programming. IEEE Transactions on Vehicular Technology, 58(9), 4819–4827.

    Article  MathSciNet  Google Scholar 

  15. Wu, J. (2008). Connectivity analysis of a mobile vehicular ad hoc network with dynamic node population. In GLOBECOM Workshops, 2008 IEEE (pp. 1–8). IEEE

  16. Tan, W., Lau, W., & Yue, O. (2009). Modeling resource sharing for a road-side access point supporting drive-thru internet. In Proceedings of the sixth ACM international workshop on vehicular internetworking, ACM (pp. 33–42).

  17. Huang, C., Guan, X., Fallah, Y., Sengupta, R., & Krishnan, H. (2009). Robustness evaluation of decentralized self-information dissemination control algorithms for vanet tracking applications, in: Vehicular Technology Conference Fall (VTC 2009-Fall), 2009 IEEE 70th, IEEE, pp. 1–5.

Download references

Acknowledgments

This work was supported partially by the National Basic Research Project of China under Grant 2010CB731803, the NSFC under Grants 61221003, 61174127, 61290322, 61273181 and 61374107, the Research Found for the Doctoral Program of Higher Education under Grants 20110073130005 and 20110073120025; the Science and Technology Commission of Shanghai Municipal, China under grants 13QA1401900; Ministry of Education of China NCET-13-0358, and the Cyber Joint Innovation Center, Hangzhou, China. This work was also sponsored by Huawei Innovation Research Program YB2014030021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Proof

Denote \([p_{out}J_{t+1}(\widetilde{D}_t,\frac{B_t}{u})+ (1-p_{out})J_{t+1}(\widetilde{D}_t-R_t(p_t)\triangle t,\frac{B_t}{u})]\) as \(\varphi (\widetilde{D}_t,b_t,p_t)\), namely,

$$\begin{aligned} \quad \varphi (\widetilde{D}_t,b_t,p_t)=\left[ p_{out}\times J_{t+1}\left( \widetilde{D}_t,\frac{B_t}{u}\right) + (1-p_{out})\times J_{t+1}\left( \widetilde{D}_t-R_t(p_t)\triangle t,\frac{B_t}{u}\right) \right] \end{aligned}$$
(52)

Let \(\triangle p_t > 0\), then we have

$$\begin{aligned}&\varphi (\widetilde{D}_t,b_t,p_t+\triangle p_t)-\varphi (\widetilde{D}_t,b_t,p_t)\nonumber \\&\quad =(1-p_{out})\left[ J_{t+1}\left( \widetilde{D}_t-R_t(p_t+\triangle p_t)\triangle t,\frac{B_t}{u}\right) - J_{t+1}\left( \widetilde{D}_t-R_t(p_t)\triangle t,\frac{B_t}{u}\right) \right] \nonumber \\ \end{aligned}$$
(53)

\(\widetilde{D}_t-R_t(p_t+\triangle p_t)\triangle t \le \widetilde{D}_t-R_t(p_t)\triangle t\) for \(R_t(p_t)=b_tlog_2(\frac{-p_t l_t ln(1-p_{out})}{N_0 b_t}+1)\) is a nondecreasing function of \(p_t\). From Lemma 1, we have:

$$\begin{aligned} \left[ J_{t+1}\left( \widetilde{D}_t-R_t(p_t+\triangle p_t)\triangle t,\frac{B_t}{u}\right) - J_{t+1}\left( \widetilde{D}_t-R_t(p_t)\triangle t,\frac{B_t}{u}\right) \right] \le 0 \end{aligned}$$
(54)

Suppose \(p_{t1}> p_{t2}\). Since \(R_t(p_t)=b_tlog_2(\frac{-p_t l_t ln(1-p_{out})}{N_0 b_t}+1)\) is a nondecreasing concave function in \(p_t\), we have:

$$\begin{aligned} \left( \widetilde{D}_t-R_t(p_{t1}+\triangle p_t)\triangle t\right) \le \left( \widetilde{D}_t-R_t(p_{t2}+\triangle p_t)\triangle t\right) \end{aligned}$$
(55)

and we have:

$$\begin{aligned}&\left[ (\widetilde{D}_t-R_t(p_{t2}+\triangle p_t)\triangle t)- (\widetilde{D}_t-R_t(p_{t2})\triangle t)\right] \nonumber \\&\quad \le \left[ (\widetilde{D}_t-R_t(p_{t1}+\triangle p_t)\triangle t)- (\widetilde{D}_t-R_t(p_{t1})\triangle t)\right] \nonumber \\&\quad \le 0 \end{aligned}$$
(56)

We know \(J_t(\widetilde{D}_t,b_t)\) is a nondecreasing convex function in \(\widetilde{D}_t\), \(\forall b_t \in \mathcal B, t\in \mathcal T\) from Lemma 1, then we have (55).

$$\begin{aligned}&\lim \limits _{\begin{array}{c} \triangle p_t > 0,\\ \triangle p_t \rightarrow 0 \end{array}}\frac{\left[ J_{t+1}\left( \widetilde{D}_t-R_t(p_{t2}+\triangle p_t)\triangle t,\frac{B_t}{u}\right) - J_{t+1}\left( \widetilde{D}_t-R_t(p_{t2})\triangle t,\frac{B_t}{u}\right) \right] }{\triangle p_t}\nonumber \\&\quad \le \lim \limits _{\begin{array}{c} \triangle p_t > 0,\\ \triangle p_t \rightarrow 0 \end{array}}\frac{\left[ J_{t+1}\left( \widetilde{D}_t-R_t(p_{t1}+\triangle p_t)\triangle t,\frac{B_t}{u}\right) - J_{t+1}\left( \widetilde{D}_t-R_t(p_{t1})\triangle t,\frac{B_t}{u}\right) \right] }{\triangle p_t}\nonumber \\&\quad \le 0 \end{aligned}$$
(57)

Denote \([J_{t+1}(\widetilde{D}_t-R_t(p_{t}+\triangle p_t)\triangle t,\frac{B_t}{u}) - J_{t+1}(\widetilde{D}_t-R_t(p_{t})\triangle t,\frac{B_t}{u})]\) as \(\triangle J_{t+1}(\widetilde{D}_t\) \(-R_t(p_{t}+\triangle p_t)\triangle t,\frac{B_t}{u})\), then we have:

$$\begin{aligned}&\lim \limits _{\begin{array}{c} \triangle p_t > 0,\\ \triangle p_t \rightarrow 0 \end{array}} \frac{\varphi (\widetilde{D}_t,b_t,p_t+\triangle p_t)-\varphi (\widetilde{D}_t,b_t,p_t)}{\triangle p_t}\nonumber \\&\quad =\lim \limits _{\begin{array}{c} \triangle p_t > 0,\\ \triangle p_t \rightarrow 0 \end{array}} (1-p_{out})\frac{\triangle J_{t+1}\left( \widetilde{D}_t-R_t(p_{t}+\triangle p_t)\triangle t,\frac{B_t}{u}\right) }{\triangle p_t}\nonumber \\&\quad \le \quad 0 \end{aligned}$$
(58)

and \(\lim \limits _{\begin{array}{c} \triangle p_t > 0,\\ \triangle p_t \rightarrow 0 \end{array}} \frac{\varphi (\widetilde{D}_t,b_t,p_t+\triangle p_t)-\varphi (\widetilde{D}_t,b_t,p_t)}{\triangle p_t}\) increases with \(p_t\).

Suppose \(\triangle p_t<0\). By the same way, we have:

$$\begin{aligned} \lim \limits _{\begin{array}{c} \triangle p_t < 0,\\ \triangle p_t \rightarrow 0 \end{array}} \frac{\varphi (\widetilde{D}_t,b_t,p_t+\triangle p_t)-\varphi (\widetilde{D}_t,b_t,p_t)}{\triangle p_t} \le 0 \end{aligned}$$
(59)

and \(\lim \limits _{\begin{array}{c} \triangle p_t < 0,\\ \triangle p_t \rightarrow 0 \end{array}} \frac{\varphi (\widetilde{D}_t,b_t,p_t+\triangle p_t)-\varphi (\widetilde{D}_t,b_t,p_t)}{\triangle p_t}\) increases with \(p_t\).

From (58) and (59), we have

$$\begin{aligned} \lim \limits _{\begin{array}{c} \triangle p_t \rightarrow 0 \end{array}} \frac{\varphi (\widetilde{D}_t,b_t,p_t+\triangle p_t)-\varphi (\widetilde{D}_t,b_t,p_t)}{\triangle p_t} \le 0 \end{aligned}$$
(60)

and \(\lim \limits _{\begin{array}{c} \triangle p_t \rightarrow 0 \end{array}} \frac{\varphi (\widetilde{D}_t,b_t,p_t+\triangle p_t)-\varphi (\widetilde{D}_t,b_t,p_t)}{\triangle p_t}\) increases with \(p_t\).

Thus, \(\varphi (\widetilde{D}_t,b_t,p_t)\) is a nonincreasing convex function on \(p_t\).

Denote \(\sum _{u=1}^{2\rho S_j} [\frac{\lambda _j^u}{u!\phi _j(n_{t+1})} \varphi (\widetilde{D}_t,b_t,p_t)]\) and \(\sum _{u=1}^{2\rho S_{j+1}} [\frac{\lambda _{j+1}^u}{u!\phi _{j+1}(n_{t+1})} \varphi (\widetilde{D}_t,b_t,p_t)]\) as \(A(\widetilde{D}_t,b_t,p_t)\) and \(C(\widetilde{D}_t,b_t,p_t)\), respectively. We know that \(A(\widetilde{D}_t,b_t,p_t)\) is a nonincreasing convex function of \(p_t\) for \(\frac{\lambda _j^u}{u!\phi _j(n_{t+1})}\ge 0\). By the same way, we know that \(C(\widetilde{D}_t,b_t,p_t)\) is a nonincreasing convex function of \(p_t\) for \(\frac{\lambda _{j+1}^u}{u!\phi _{j+1}(n_{t+1})}\ge 0\).

From (41), we have

$$\begin{aligned}&\psi _t(\widetilde{D}_t,b_t,p_t)\nonumber \\&\quad =\mu (p_t)+Pr(h_t\in \mathcal H)A(\widetilde{D}_t,b_t,p_t)+[1-Pr(h_t\in \mathcal H)]C(\widetilde{D}_t,b_t,p_t) \end{aligned}$$
(61)

Since \(Pr(h_t\in \mathcal H)\ge 0\) and \(1-Pr(h_t\in \mathcal H) \ge 0\), we know that \(\psi _t(\widetilde{D}_t,b_t,p_t)\) is a convex function on \(p_t\) for the convexity of \(\mu (p_t)\), \(A(\widetilde{D}_t,b_t,p_t)\) and \(C(\widetilde{D}_t,b_t,p_t)\). So \(\psi _t(\widetilde{D}_t,b_t,p_t)\) has a minimal value when \(0 \le p_t \le \frac{N_0b_t}{-ln(1-p_{out})l_t}(2^{\frac{\frac{\widetilde{D}_t}{\triangle t}}{b_t}}-1)\). Thus we proved Theorem 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Yang, B., Chen, C. et al. Power Allocation Based on Finite-Horizon Optimization for Data Transmission in Vehicle-to-Roadside Communications. Wireless Pers Commun 81, 1177–1197 (2015). https://doi.org/10.1007/s11277-014-2178-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2178-0

Keywords

Navigation