Abstract
In this paper, an improved low complex hybrid weighted bit-flipping algorithm is proposed for decoding low-density parity-check codes. Compared to the state-of-the art weighted bit-flipping algorithms (WBFs), the proposed algorithm improves both the coding gain and decoding speed with low computational complexity. Through simulations the proposed algorithm is shown to achieve coding gain improvement in the range of 0.14–1.5 dB at \(\hbox {BER}=10^{-5}\) while reducing up to 22 % of the iterations required for decoding when compared with conventional WBF algorithms. Moreover, the proposed algorithm while maintaining less computational complexity is shown to achieve about 65 % faster decoding convergence without mitigating the decoding performance.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-014-2210-4/MediaObjects/11277_2014_2210_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-014-2210-4/MediaObjects/11277_2014_2210_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-014-2210-4/MediaObjects/11277_2014_2210_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-014-2210-4/MediaObjects/11277_2014_2210_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-014-2210-4/MediaObjects/11277_2014_2210_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-014-2210-4/MediaObjects/11277_2014_2210_Fig6_HTML.gif)
References
Gallager, R. G. (1962). Low-density parity-check codes. IRE Transactions on Information Theory, 8(1), 21–28.
Mackay’s, D. J. C., & Neal, R. M. (1997). Near Shannon limit performance of low density parity check codes. Electronic Letters, 33(6), 457–458.
Chung, S. Y., Founey, G. D., Richardson, T. J., & Urbanke, (2001). On the design of low density parity check codes within 0.045 dB of the Shannon limit. IEEE Communication Letters, 5(2), 58–60.
Fossorier, M., Mihalijevic, M., & Imai, H. (1999). Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Transactions on Communication, 47(5), 673–680.
Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M. P. C., & Hu, X. Y. (2005). Reduced complexity decoding of LDPC codes. IEEE Transactions on Communications, 53(8), 1288–1299.
Kou, Y., Lin, S., & Fossorier, M. P. C. (2001). Low density parity check codes based on finite geometries: a rediscovery and new results. IEEE Transactions on Information Theory, 47(7), 2711–2736.
Zhang, J., & Fossorier, M. P. C. (2004). A modified weighted bit-flipping decoding of low-density parity-check codes. IEEE Communication Letters, 8(3), 165–167.
Jiang, M., Zhao, C., Shi, Z., & Chen, Y. (2005). An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes. IEEE Communication Letters, 9(9), 814–816.
Huang, H., Wang, Y., & Wei, G. (2013). Combined modified weighted bit-flipping decoding of FG-LDPC codes. Journal of Computational Information Systems, 9(14), 5853–5860.
Lee, C. H., & Wolf, W. (2005). Implementation efficient reliability ratio based weighted bit flipping decoding for LDPC codes. IET Electronic Letters, 41(13), 755–757.
Shan, M., Zhao, C. M., & Jiang, M. (2005). Improved weighted bit-flipping algorithm for decoding LDPC codes. IEE Proceedings on Communications, 152(6), 919–922.
Ma, K., Li, Y., Zhu, C., Zhang, H., & Zhang, Y. (2014). Lowering error floor of LDPC codes using an improved parallel WBF algorithm. ETRI Journal, 36(1), 171–174.
Tiwari, H. D., Tiwari, H. D., & Lee, K.-Y. (2014). Hybrid weighted bit-flipping low density parity check decoding. Digital Signal Processing Journal (Elsevier), 28(1), 82–92.
Jiang, X., Lee, M. H., & Qi, J. (2012). Improved progressive edge-growth algorithm for fast encodable LDPC codes. EURASIP Journal on Wireless Communications and Networking., 1(178), 1–10.
Mackay’s, D. J. C.: Encyclopaedia of sparse graph codes. http://www.inference.phy.cam.ac.uk/Mackay’s/codes/data.html.
Zeng, L., Lan, L., Yu, Y., & Zhou, T. B. (2008). Construction of non-binary cyclic, quasi-cyclic and regular LDPC codes: a finite geometry approach. IEEE Transactions on Communications, 56(3), 378–387.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Roberts, M.K., Jayabalan, R. An Improved Low Complex Hybrid Weighted Bit-Flipping Algorithm for LDPC Codes. Wireless Pers Commun 82, 327–339 (2015). https://doi.org/10.1007/s11277-014-2210-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-014-2210-4