Skip to main content
Log in

Intercell Interference Coordination for Control Channels in LTE and LTE-A: An Optimization Scheme Based on Evolutionary Algorithms

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Intercell Interference Coordination (ICIC) encompasses techniques aiming at reducing the intercell interference at cell edges, an issue affecting not only data but also control channels in Long Term Evolution (LTE) and LTE-Advanced (LTE-A). This paper presents several ICIC-based optimization schemes to improve the performance of the control channels: the Physical Downlink Control Channel (PDCCH) in LTE and the enhanced PDCCH (ePDCCH) in LTE-A. The study is focused on realistic deployments, where the amount of intercell interference received at different cells varies considerably, making very difficult the task of homogenizing the performance of the ePDCCH in the coverage area. The PDCCH is time-multiplexed, and hence, traditional ICIC schemes such as Soft Frequency Reuse cannot be applied. As an answer to this, LTE-A introduces the ePDCCH. This new structure increases the signaling capacity and allows frequency domain ICIC. However, the optimization of the ePDCCH poses a new problem. The resources devoted to the ePDCCH need to be borrowed from the data channels. In order to address these problems, several multiobjective optimization schemes based on evolutionary algorithms are proposed to adjusts the configuration of the control channels, and consequently, to reduce the consumption of control resources. The results show that significant capacity gains, up to 30 %, are obtained in severely interfered cells with notorious savings in terms of transmitted power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The extension to other antenna configurations such as Multiple Input Multiple Output (MIMO) can be done by modifying the SINR thresholds (\(\psi _x^{\text {T}}\)).

References

  1. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) pp. c1–269 (2008). doi:10.1109/IEEESTD.2008.4579760

  2. Capozzi, F., Laselva, D., Frederiksen, F., Wigard, J., Kovacs, I. Z., & Mogensen, P. E. (2009). UTRAN LTE downlink system performance under realistic control channel constraints. In 2009 IEEE 70th vehicular technology conference fall (VTC 2009-Fall), pp. 1–5.

  3. Chen, Y. (2011). Resource allocation for downlink control channel in LTE systems. In 2011 7th International conference on wireless communications, networking and mobile computing (WiCOM), pp. 1–4. doi:10.1109/wicom.2011.6036666

  4. Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (2nd ed.). Berlin: Springer: Genetic and Evolutionary Computation Series.

    MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2), 182–197.

    Article  Google Scholar 

  6. Deb, S., Monogioudis, P., Miernik, J., & Seymour, J. (2013). Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking, PP(99), 1–1. doi:10.1109/TNET.2013.2246820

  7. Einhaus, M., Wengerter, C., Ohlhorst, J., & Feng, S. (2012). Performance study of an enhanced downlink control channel design for LTE. In 2012 IEEE 75th vehicular technology conference (VTC Spring), pp. 1–5. doi:10.1109/VETECS.2012.6240100

  8. Fan, Y., & Valkama, M. (2011). Efficient control channel resource allocation for VoIP in OFDMA-based packet radio networks. EURASIP Journal on Wireless Communications and Networking, 2011, 1–11.

  9. Fujitsu: Enhancing LTE Cell-Edge Performance via PDCCH ICIC. Tech. Rep. (2011). www.us.fujitsu.com/telecom

  10. Gale, D. (2007). Linear programming and the simplex method. Notices of the AMS, 54(3), 364–369.

    MathSciNet  MATH  Google Scholar 

  11. Gill, P. E., & Wong, E. (2010). Sequential quadratic programming methods. Tech. Rep. NA-10-03, Department of Mathematics, University of California, San Diego, La Jolla, CA.

  12. Global mobile Suppliers Association (GSA): Status of the LTE Ecosystem. Tech. Rep. (2013, January 11). http://www.gsacom.com/news/.

  13. González, D., Garcia-Lozano, M., Ruiz, S., & Olmos, J. (2012). On the role of downlink control information in the provision of QoS for NRT services in LTE. In IEEE vehicular technology conference (VTC), 2012, pp. 1–5.

  14. González, G. D., García-Lozano, M., Ruiz, S., & Olmos, J. (2010). Static inter-cell interference coordination techniques for LTE networks: A fair performance assessment. Lecture Notes in Computer Science, 6235(68), 211–222. doi:10.1007/978-3-642-15428-7_21. (Springer, Berlin/Heidelberg).

  15. González, G. D., García-Lozano, M., Ruiz Boqué, S., & Lee, D. S. (2013). Optimization of soft frequency reuse for irregular LTE macrocellular networks. IEEE Transactions on Wireless Communications, 12(5), 2410–2423.

    Article  Google Scholar 

  16. Group Radio Access Network: TS 22.146: Multimedia Broadcast/Multicast Service. 3GPP (2008). V8.4.0.

  17. Group Radio Access Network: TS 36.213: Physical Layer Procedures. 3GPP GRAN (2010). V9.2.0.

  18. Group Radio Access Network: TS 36.211: Physical Channels and Modulation. 3GPP (2012). V11.1.0 (Release 11).

  19. Group Radio Access Network: TS 36.213: Physical Layer Procedures. 3GPP (2012). V11.1.0 (Release 11).

  20. Hasan, Z., Boostanimehr, H., & Bhargava, V. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys Tutorials, 13(4), 524–540. doi:10.1109/SURV.2011.092311.00031.

    Article  Google Scholar 

  21. Irmer, R., Droste, H., Marsch, P., Grieger, M., Fettweis, G., Brueck, S., et al. (2011). Coordinated multipoint: concepts, performance, and field trial results. IEEE Communications Magazine, 49(2), 102–111.

    Article  Google Scholar 

  22. Iwamura, M., Etemad, K., Fong, M. H., Nory, R., & Love, R. (2010). Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE Update]. IEEE Communications Magazine, 48(8), 60–67. doi:10.1109/MCOM.2010.5534588.

    Article  Google Scholar 

  23. Jürgen Branke, J., Deb, K., Miettinen, K., & Slowiński, R. E. (2008). Multiobjective optimization: Interactive and evolutionary approaches. In Lecture Notes in Computer Science, Vol. 5252. Springer.

  24. Novlan, T., Ganti, R., Ghosh, A., & Andrews, J. (2011). Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications, 99, 1–12.

    Google Scholar 

  25. Puttonen, J., Puupponen, H.-H., Aho, K., Henttonen, T., & Moisio, M. (2010). Impact of control channel limitations on the LTE VoIP capacity. In 2010 Ninth international conference on networks (ICN), pp. 77–82. doi:10.1109/ICN.2010.21

  26. Sawaragi, Y., Hirotaka, I., & Tanino, T. (1985). Theory of multiobjective optimization (1st ed.). New York: Academic Press.

    MATH  Google Scholar 

  27. Sesia, S., Toufik, I., & Baker, M. (2011). The UMTS long term evolution: From theory to practice (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  28. Solovay, R. M. (1970). A model of set-theory in which every set of reals is Lebesgue measurable. The Annals of Mathematics, 92(1), 1–56.

    Article  MathSciNet  MATH  Google Scholar 

  29. Verdone, R., Buehler, H., Cardona, N., Munna, A., Patelli, R., Ruiz, S., ..., Geerdes, H. (2004). MORANS white paper—Update. Tech. Rep. available as TD(04)062, COST 273, Athens (Greece).

  30. Weise, T. (2009). Global optimization algorithms—Theory and application (2nd ed). Self-Published. http://www.it-weise.de/

  31. Yan, Y., Li, A., Harada, A., & Kayama, H. (2011). Enhanced downlink control channel resource allocation algorithm for cross-carrier scheduling in LTE-advanced carrier aggregation system. In 2011 IEEE 73rd vehicular Technology Conference (VTC Spring), pp. 1–5. doi:10.1109/VETECS.2011.5956151.

  32. Yang, Q., & Ding, S. (2007). Novel algorithm to calculate hypervolume indicator of Pareto approximation set. Advanced Intelligent Computing Theories and Applications, 2, 235–244. doi:10.1007/978-3-540-74282-1_27.

  33. Yi, W., Hua, Z., & Jianming, W. (2012). The search space design for enhanced downlink control channel in LTE-advanced system. In 2012 8th International wireless communications and mobile computing conference (IWCMC), pp. 322–326. doi:10.1109/IWCMC.2012.6314224.

  34. Zhu, Y., Li, A., & Harada, A. (2012). Novel method to improve control channel reliability in LTE-advanced heterogeneous network. In 2012 IEEE vehicular technology conference (VTC Fall), pp. 1–5 (2012). doi:10.1109/VTCFall.6399318

  35. Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms—A comparative case study. In Parallel problem solving from nature V. Springer, pp. 292–301.

Download references

Acknowledgments

The work by Mario Garcia-Lozano has been funded has been funded through the project TEC2011-27723-C02-01 (Spanish Industry Ministry) and the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David González G..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González G., D., García-Lozano, M. & Boqué, S.R. Intercell Interference Coordination for Control Channels in LTE and LTE-A: An Optimization Scheme Based on Evolutionary Algorithms. Wireless Pers Commun 93, 687–708 (2017). https://doi.org/10.1007/s11277-014-2222-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2222-0

Keywords

Navigation