Skip to main content
Log in

Cooperative MIMO Based Reporting System for IEEE 802.22 Standard Over Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As cooperative spectrum sensing improves the detection probability, the multiple-input multiple-output (MIMO) system spatially transmits multiple copy of data independently to improve capacity and the IEEE 802.22 wireless regional area network standard aims to utilize the digital video broadcasting-terrestrial (DVB-T) bands opportunistically for data communication to the rural area, we consider a cooperative MIMO based reporting system where the cognitive radio users forward the DVB-T signal to the fusion center (FC) using time division multiple access. The network is operating over AWGN sensing channel and the reporting channel experiences an independent and identically distributed Rayleigh, Rician fading. We arrive an expression for average detection probability at FC for maximum ratio combining scheme. We consider the FC has the prior knowledge about the reporting channel. We analyze the system performance under various MIMO scenarios through Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communication. IEEE Journal on Selected Areas in Communcations, 23(2), 201–220.

    Article  Google Scholar 

  2. Ma, J., Li, G. Y., & Juang, B. H. F. (2009). Signal processing in cognitive radio. Proceedings of the IEEE, 97(5), 805–823.

    Article  Google Scholar 

  3. Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.

    Article  Google Scholar 

  4. Lu, L., Zhou, X., Onunkwo, U., & Li, G. Y. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 28, 1–16.

  5. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–25.

    Article  Google Scholar 

  6. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.

    Article  Google Scholar 

  7. Ian, A. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–46.

    Article  Google Scholar 

  8. Letaief, K., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5), 878–893.

    Article  Google Scholar 

  9. Ganesan, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio-part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2204–2213.

    Article  Google Scholar 

  10. Ganesan, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio-part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2214–2222.

    Article  Google Scholar 

  11. Hongjian, S., Nallanathan, A., Jing, J., & Cheng-Xiang, W. (2011, August). Cooperative spectrum sensing with diversity reception in cognitive radios. In International ICST conference on communications and networking in China (CHINACOM), pp. 216–220.

  12. Ma, J., & Zhao, G. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.

    Article  MathSciNet  Google Scholar 

  13. Danev, D. (2010). On signal detection techniques for the DVB-T standard. In International symposium on communications, control and signal processing (ISCCSP), pp. 1–5.

  14. Danev, D., Axell, E., & Larsson, E. G. (2010). Spectrum sensing methods for detection of DVB-T signals in AWGN and fading channels. In International symposium on personal indoor and mobile radio communications (PIMRC), pp. 2721–2726.

  15. Chen, L., Peng, Q., Wang, J., & Li, S. (2007). Sensing schemes for DVB-T in cognitive radio context. In International conference on communications, circuits and systems, pp. 314–318.

  16. Saeed, R. A., & Mokhtar, R. A. (2012). TV white spaces spectrum sensing: Recent developments, opportunities and challenges. In International conference on sciences of electronics, technologies of information and telecommunications (SETIT), pp. 21–24.

  17. Li, J., & Petre, (2009). MIMO radar signal processing. Hoboken: Wiley.

    Google Scholar 

  18. Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. Hoboken: Wiley.

    Book  Google Scholar 

  19. Bliss, D. W., & Govindasamy, S. (2013). Adaptive wireless communications: MIMO channels and networks. Cambridge: Cambridge Press.

    Book  Google Scholar 

  20. Mietzner, J., Schober, R., Lampe, L., Gerstacker, W. H., & Hoeher, P. A. (2009). Multiple-antenna techniques for wireless communications—A comprehensive literature survey. IEEE Communications Surveys and Tutorials, 11(2), 87–105.

    Article  Google Scholar 

  21. IEEE P802.22a/D1 IEEE draft standard for information technology: Telecommunications and information exchange between systems wireless regional area networks (WRAN)-specific requirements part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands Amendment: Management and Control Plane Interfaces and Procedures and enhancement to the Management Information Base (MIB) (2013) (pp. 1–551).

  22. Stevenson, C., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S. J., & Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130,138.

    Article  Google Scholar 

  23. Eksim, A., Kulac, S., & Sazli, M. H. (2009). Effective cooperative spectrum sensing in IEEE 802.22 standard with time diversity. In International conference on advances in computational tools for engineering applications, pp. 528–531.

  24. Nekovee, M. (2009). A survey of cognitive radio access to TV White Spaces. In International conference on ultra modern telecommunications and workshops, pp. 1–8.

  25. Sum, C.-S., Villardi, G. P., Rahman, M. A., Baykas, T., Alemseged, Y., Filin, S., et al. (2013). Cognitive communication in TV white spaces: An overview of regulations, standards, and technology. IEEE Communications Magazine, 51(7), 138–145.

    Article  Google Scholar 

  26. Riviello, D., Garello, R., Benco, S., Crespi, F., & Perotti, A. (2013). Sensing of DVB-T signals for white space cognitive radio systems. In The third international conference on advances in cognitive radio, pp. 12–17.

  27. Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2012). Cooperative spectrum sensing in multiple antenna based cognitive radio network using an improved energy detector. IEEE Communications Letters, 16(1), 64–67.

    Article  Google Scholar 

  28. Rossi, P. S., Ciuonzo, D., & Romano, G. (2013). Orthogonality and cooperation in collaborative spectrum sensing through MIMO decision fusion, pp. 1–11. preprint. arXiv:1308.3239.

  29. Hariharan, S., Venkata Siva Prasad, S., & Muthuchidambaranathan, P. (2013). Average detection probability analysis for cooperative-MIMO spectrum sensing in cognitive radio networks. In Proceedings of international conference on advances in computing, communications and informatics (ICACCI), pp. 133–136.

  30. Lim, S., Jung, H., & Song, M.-S. (2009). Cooperative spectrum sensing for IEEE 802.22 WRAN system. In Proceedings of internatonal conference on computer communications and networks, pp. 1–5.

  31. Wang, P., Fang, J., Han, N., & Li, H. (2010). Multiantenna-assisted spectrum sensing for cognitive radio. IEEE Transactions on Vehicular Technology, 59(4), 1791–1800.

    Article  Google Scholar 

  32. Taherpour, A., Nasiri-Kenari, M., & Gazor, S. (2010). Multiple antenna spectrum sensing in cognitive radios. IEEE Transactions on Wireless Communications, 9(2), 814–823.

    Article  Google Scholar 

  33. Papoulis, A., & Unnikrishna Pillai, S. (2002). Probability, random variables and stochastic process (4th ed.). New work: McGraw-Hill.

    Google Scholar 

  34. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). San Diego, CA: Academic Press.

    MATH  Google Scholar 

  35. Nuttall, A. H. (1975). Some integrals involving the \(Q_{M}\) function. IEEE Transactions on Information Theory, 21(1), 95–96.

    Article  MATH  MathSciNet  Google Scholar 

  36. Shellhammer, S., & Chouinard, G. (2006). Spectrum sensing requirements summary. IEEE Std. 802.22-06/0089r4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hariharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariharan, S., Muthu Chidambara Nathan, P. Cooperative MIMO Based Reporting System for IEEE 802.22 Standard Over Fading Channels. Wireless Pers Commun 82, 953–964 (2015). https://doi.org/10.1007/s11277-014-2260-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2260-7

Keywords

Navigation