Skip to main content

Advertisement

Log in

APSK Modulation Recognition for DVB-S2 Using GLRT and Radius-Constellation Under Frequency Offset

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the problem of recognizing APSK modulation for DVB-S2 is studied. We propose a novel recognition method, which is robust to carrier frequency offset and phase error. Firstly, the radius-constellation is defined and the algorithm to transform the traditional constellation to radius-constellation is proposed. And then, we propose a first-ever radius-constellation based method to recognize the APSK modulation, using Generalized Likelihood Ratio Test. Simulation results show that the proposed method is effective for APSK modulation recognition under frequency offset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Zhu, Z. C., Aslam, M. W., & Nandi, A. K. (2014). Genetic algorithm optimized distribution sampling test for M-QAM modulation classification. Signal Processing, 94, 264–277.

    Article  Google Scholar 

  2. Sherme, A. E. (2012). A novel method for automatic modulation recognition. Applied Soft Computing, 12, 453–461.

    Article  Google Scholar 

  3. Puengnim, A., Thomas, N., Tourneret, J. Y., & Vidal, J. (2010). Classification of linear and non-linear modulations using the Baum–Welch algorithm and MCMC methods. Signal Processing, 90, 3242–3255.

    Article  MATH  Google Scholar 

  4. Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48(3), 416–429.

    Article  Google Scholar 

  5. Feng, X., & Li, J. (2006). A hierarchical digital modulation classification algorithm for adaptive wireless communication systems. Wireless Personal Communications, 39, 321–326.

    Article  Google Scholar 

  6. Ahmadi, N. (2010). Using fuzzy clustering and TTSAS algorithm for modulation classification based on constellation diagram. Engineering Applications of Artificial Intelligence, 23, 357–370.

    Article  MathSciNet  Google Scholar 

  7. Zhao, D. M. (2006). The 2nd generation digital video broadcasting standard DVB-S2 and required on-board performances. China Communications, 82–86.

  8. Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.

    Article  Google Scholar 

  9. Madhavan, N., Vinod, A. P., Madhukumar, A. S., & Krishna, A. K. (2013). Spectrum sensing and modulation classification for cognitive radios using cumulants based on fractional lower order statistics. International Journal of Electronics and Communications, 67, 479–490.

    Article  Google Scholar 

  10. Wei, S. (2013). Feature space analysis of modulation classification using very high-order statistics. IEEE Communications Letters, 17(9), 1688–1691.

    Article  Google Scholar 

  11. Taira, S., & Murakami, E. (1999). Automatic classification of analogue modulation signals by statistical parameters. IEEE Signal Processing Magazine, 1, 202–207.

    Google Scholar 

  12. Azzouz, E. E., & Nandi, A. K. (1997). Modulation recognition using artificial neural networks. Signal Processing, 56(2), 165–175.

    Article  MATH  Google Scholar 

  13. ETSI EN 302-307 (2006). Digital Video Broadcasting (DVB): Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications, V1.1.2, July 2006.

  14. Godard, D. N. (1980). Self-recovering equalization and carrier-tracking in two dimensional data communication systems. IEEE Transactions on Communications, 28, 1867–1875.

    Article  Google Scholar 

  15. Kay, S. M. (2001). Fundamentals of statistical signal processing, volume II: Detection theory. Englewood Cliffs: Prentice Hall PTR.

    Google Scholar 

  16. ETSI EN 302 755 (2012). Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2), April 2012.

  17. ETSI EN 302 769 (2014). Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2), March 2014.

  18. ETSI EN 302 307-2 (2014). Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications, Part II: S2-Extensions (DVB-S2X)-(Optional), March 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Yuan, YJ., Huang, ZT. et al. APSK Modulation Recognition for DVB-S2 Using GLRT and Radius-Constellation Under Frequency Offset. Wireless Pers Commun 82, 1213–1224 (2015). https://doi.org/10.1007/s11277-015-2276-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2276-7

Keywords