Skip to main content
Log in

Optimal Design of Low Power CMOS Power Amplifier Using Particle Swarm Optimization Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A low voltage 2.4 GHz CMOS power amplifier for wireless personal area network (WPAN) applications is presented in TSMC 0.13 \(\upmu \)m CMOS process. It consists of driver and power amplifier stages which are connected in current reuse structure. The driver amplifier has push pull inverter configuration. The power amplifier is the common source amplifier. These two stages are biased in class AB mode. For optimizing out-of-band emissions, the proposed power amplifier is linearized by RF predistortion technique. For efficient power amplifier, the design parameters are needed to be optimized using particle swarm optimization technique. The optimized power amplifier achieves 0 dBm output power, 34.06 % PAE, 18 dB power gain at 2.4 GHz frequency. It consumes 2.95 mW power at a supply voltage of 1.2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Soomro, A., & Cavalcanti, D. (2007). Opportunities and challenges in using WPAN and WLAN technologies in medical environments. IEEE Communications Magazine, 45(2), 114–122.

    Article  Google Scholar 

  2. Zolfaghari, A., & Razavi, B. (2003). A low-power 2.4-GHz transmitter/receiver CMOS IC. IEEE Journal of Solid-State Circuits, 38(2), 176–183.

    Article  Google Scholar 

  3. Choi, P., Park, H. C., Kim, S., Park, S., Nam, I., Kim, T. W., et al. (2003). An experimental coin-size radio for extremely low-power WPAN (IEEE 802.15.4) application at 2.4 GHz. IEEE Journal of Solid-State Circuits, 38(12), 2258–2268.

    Article  Google Scholar 

  4. Lin, K. E., Weng, R. M., Hsiao, C. L., & Wei, H. C. (2004). A 1V 2.4 GHz CMOS power amplifier with integrated diode linearizer. In Proceedings of the IEEE Asia-Pacific conference on circuits and systems (pp. 109–111).

  5. Ho, K. W., & Luong, H. C. (2003). A 1V CMOS power amplifier for bluetooth applications. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 50(8), 445–449.

    Article  Google Scholar 

  6. Chee, Y. H., Rabaey, J., & Niknejad, A. M. (2004). A Class A/B low power amplifier for wireless sensor networks. In Proceedings of the international symposium on circuits and systems (ISCAS’ 04) (pp. 409–412).

  7. Liu, G., King Liu, T. J., & Niknejad, A. M. (2006). A 1.2V, 2.4GHz fully integrated linear CMOS power amplifier with efficiency enhancement. In Proceedings of the IEEE custom intergrated circuits conference (CICC’ 06) (pp. 141–144).

  8. Haldi, P., Chowdhury, D., Reynaert, P., Liu, G., & Niknejad, A. M. (2008). A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS. IEEE Journal of Solid-State Circuits, 43(5), 1054–1063.

    Article  Google Scholar 

  9. Le, V. H., Han, S. K., & Lee, S. G. (2011). A low power driver amplifier for unlicensed 2.4 GHz band. IEICE Transactions on Electronics, 94(1), 120–123.

    Article  Google Scholar 

  10. Jia, H., Chi, B., Kuang, L., & Wang, Z. (2012). A 1 V, 69–73 GHz CMOS power amplifier based on improved Wilkinson power combiner. Microelectronics Journal, 43(6), 370–376.

    Article  Google Scholar 

  11. Chenjian, W., Zhiqun, L., Nan, Y., Meng, Z., & Liang, C. (2013). \(0.18\upmu \)m CMOS low voltage power amplifier for WSN application. Telkomnika, 11(8), 4470–4476.

    Article  Google Scholar 

  12. Elmala, M., Paramesh, J., & Soumyanath, K. (2006). A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion. IEEE Journal of Solid-State Circuits, 41(6), 1323–1332.

    Article  Google Scholar 

  13. Son, K. Y., Koo, B., & Hong, S. (2012). A CMOS power amplifier with a built-in RF predistorter for handset applications. IEEE Transactions on Microwave Theory and Techniques, 60(8), 2571–2580.

    Article  Google Scholar 

  14. Onizuka, K., Ishihara, H., Hosoya, M., Saigusa, S., Watanabe, O., & Otaka, S. (2012). A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion. IEEE Journal of Solid-State Circuits, 47(8), 1820–1827.

    Article  Google Scholar 

  15. Chu, M., & Allstot, D. J. (2005). Elitist nondominated sorting genetic algorithm based RF IC optimizer. IEEE Transactions on Circuits and Systems-I: Regular Papers, 52(3), 535–545.

    Article  MathSciNet  Google Scholar 

  16. Yeung, S. H., Chan, W. S., Ng, K. T., & Man, K. F. (2012). Computational optimization algorithms for antennas and RF/microwave circuit designs: An overview. IEEE Transactions on Industrial Informatics, 8(2), 216–227.

    Article  Google Scholar 

  17. Le, K. T. (2004). Designing a ZigBee-ready IEEE 802.15.4 compliant radio transceiver. http://web.eecs.umich.edu/~prabal/teaching/eecs598-w10/readings/Le04.pdf.

  18. Allen, P. E., & Holberg, D. R. (2002). CMOS analog circuit design (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  19. Kazimierczuk, M. K. (2008). RF power amplifiers. New York: Wiley.

    Google Scholar 

  20. Ruiz, H. S., & Pérez, R. B. (2014). Linear CMOS RF power amplifiers: A complete design workflow. New York: Springer Science+Business Media.

    Book  Google Scholar 

  21. AGILENT: Agilent ADS presentation on RF predistortion of power amplifiers. http://cp.literature.agilent.com/litweb/pdf/5989-9107EN.pdf.

  22. Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann. http://www.swarmintelligence.org/SIBook/SI.php.

  23. Hassan, R., Cohanim, B., & Weck, O. D. (2004). A comparison of particle swarm optimization and genetic algorithm. http://web.mit.edu/deweck/www/PDF_archive/3%20Refereed%20Conference/3_50_AIAA-2005-1897.pdf.

  24. Robinson, J., & Rahmat-Samii, Y. (2004). Particle swarm optimization in electromagnetics. IEEE Transactions On Antennas And Propagation, 52(2), 397–407.

    Article  MathSciNet  Google Scholar 

  25. Coelho, L. S., & Sierakowski, C. A. (2008). A software tool for teaching of particle swarm optimization fundamentals. Advances in Engineering Software, 39, 877–887.

    Article  Google Scholar 

  26. Nguyen, T. K., Krizhanovskii, V., Lee, J., Han, S. K., Lee, S. G., Kim, N. S., et al. (2006). A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in \(0.18\upmu \)m CMOS technology. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4062–4071.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manjula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, S., Selvathi, D. Optimal Design of Low Power CMOS Power Amplifier Using Particle Swarm Optimization Technique. Wireless Pers Commun 82, 2275–2289 (2015). https://doi.org/10.1007/s11277-015-2346-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2346-x

Keywords

Navigation