Skip to main content

Advertisement

Log in

Outage Probability Gap Between Proactive and Reactive Opportunistic Cognitive Relay Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For cognitive relay networks (CRNs) where the secondary link contains multiple relays, considering the interference from primary user (PU) and the maximum transmit power constraint at the secondary user, we investigate the exact and asymptotic outage probabilities for both proactive and reactive decode-and-forward (DF) schemes. Unlike the conventional opportunistic relay networks where the outage probabilities for both proactive and reactive DF schemes are the same, it is found that an outage gap of the two schemes does exist for the CRNs. It is shown that the outage gap tends to zero when the interference caused by PU is high enough and the outage gap increases with the increase of the difference between the threshold signal-to-interference-and-noise ratios at relay and destination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.

    Article  Google Scholar 

  3. Farraj, A. K., Hammad, E. M. (2012). Impact of quality of service constraints on the performance of spectrum sharing cognitive users. Wireless Personal Communications, 1–16, doi:10.1007/s11277-012-0606-6 (Published Online).

  4. Farraj, A. K., & Ekin, S. (2013). Performance of cognitive radios in dynamic fading channels under primary outage constraint. Wireless Personal Communications, 73(3), 637–649.

    Article  Google Scholar 

  5. Li, D. (2012). Joint power and rate control combined with adaptive modulation in cognitive radio networks. Wireless Personal Communications, 63(3), 0929–6212.

    Article  Google Scholar 

  6. Yang, L., Qaraqe, K. A., Serpedin, E., & Alouini, M. S. (2013). Performance analysis of distributed beamforming in a spectrum sharing system. IEEE Transactions on Vehicular Technology, 62(4), 1655–1666.

    Article  Google Scholar 

  7. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang, Q., Jia, J., & Zhang, J. (2009). Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 47(2), 111–117.

    Article  Google Scholar 

  9. Guo, Y., Kang, G., Zhang, N., Zhou, W., & Zhang, P. (2010). Outage performance of relay-assisted cognitive-radio system under spectrum-sharing constraints. Electronics Letters, 46(2), 182–184.

    Article  Google Scholar 

  10. Luo, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Article  Google Scholar 

  11. Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.

    Article  MathSciNet  Google Scholar 

  12. Yang, P., Luo, L., & Qin, J. (2012). Outage performance of cognitive relay networks with interference from primary user. IEEE Communications Letters, 16(10), 1695–1698.

    Article  Google Scholar 

  13. Xu, W., Zhang, J., Zhang, P., & Tellambura, C. (2012). Outage probability of decode-and-forward cognitive relay in presence of primary user’s interference. IEEE Communications Letters, 16(8), 1252–1255.

    Article  Google Scholar 

  14. Xia, M., & Aissa, S. (2012). Cooperative AF relaying in spectrum-sharing systems: Outage probability analysis under co-channel interferences and relay selection. IEEE Transactions on Communications, 60(11), 3252–3262.

    Article  MathSciNet  Google Scholar 

  15. Yang, P., Zhang, Q., Luo, L., & Qin, J. (2014). Outage performance of underlay cognitive opportunistic multi-relay networks in the presence of interference from primary user. Wireless Personal Communications, 74(2), 343–358.

    Article  Google Scholar 

  16. Si, J., Li, Z., Huang, H., Chen, J., & Gao, R. (2012). Capacity analysis of cognitive relay networks with the PU’s interference. IEEE Communications Letters, 16(12), 2020–2023.

    Article  Google Scholar 

  17. Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.

    Article  Google Scholar 

  18. Forney, G. D., & Forney, G. D. (1966). Concatenated codes (Vol. 11). Cambridge: MIT press.

    Google Scholar 

  19. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Waltham: Academic.

    MATH  Google Scholar 

  20. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series: Elementary functions (Vol. 1). Amsterdam: Gordon Breach Science Publishers.

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61173148, 61102070, and 61202498), the Industry-University-Research Project of Guangdong Province and the Ministry of Education, China (2011B090400581), the Natural Science Foundation of Guangdong Province (S2011040004135), the Scientific and Technological Project of Guangzhou City (12C42051578 and 11A11060133), and Guangxi Natural Science Foundation (2012GXNSFBA053162), the Research Fund for the Doctoral Program of Dongguan University of Technology (ZJ20131205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Appendices

Appendix 1: Proof of Proposition 1

In (6), the CDF of \(\text{ F }_{\gamma _{s {r_k}}|g_{sp}}(\gamma _{th}^{\mathrm{R}})\) can be expressed as

$$\begin{aligned} \text{ F }_{\gamma _{s {r_k}}|g_{sp}}(\gamma _{th}^{\mathrm{R}})&=\iint _{\varOmega }f_{g_{c r_k}, g_{s r_k}}(x, y)dxdy \end{aligned}$$
(24)

where \(\varOmega =\{(x,y)|0<x< \infty , 0<y<\frac{\gamma _{th}^{\mathrm{R}}(\gamma _I x+1)}{\min \{\gamma /g_{sp}, \gamma _{Q}\}}\}\) is the integration region; \(f_{X, Y}(\bullet )\) denotes the joint probability density function (PDF) of \(X\) and \(Y\).

Given \(g_{sp}\), both \(g_{s {r_k}}\) and \(g_{cr_k}\) are exponential RVs in (6). The joint PDF of \(g_{c r_k}\) and \(g_{s r_k}\) is expressed as

$$\begin{aligned} f_{g_{c r_k},g_{s r_k}}(x, y) =\lambda _{cr}\lambda _{sr}e^{-\lambda _{cr}x-\lambda _{sr}y} \text{ for } x>0, y>0. \end{aligned}$$
(25)

Thus, we have

$$\begin{aligned} \text{ F }_{\gamma _{s {r_k}}|g_{sp}}(\gamma _{th}^{\mathrm{R}})&=\int _{0}^\infty \lambda _{cr}e^{-\lambda _{cr}x} \int _{0}^{\frac{\gamma _{th}^{\mathrm{R}}(\gamma _I x+1)}{\min \{\gamma /g_{sp}, \gamma _{Q}\}}} \lambda _{sr}e^{-\lambda _{sr}y}dydx \nonumber \\&=1-\lambda _{cr}e^{-\xi }/(\xi \gamma _I+\lambda _{cr}) \end{aligned}$$
(26)

where

$$\begin{aligned} \xi =\frac{\lambda _{sr}\gamma _{th}^{\mathrm{R}}}{\min \{\gamma /g_{sp}, \gamma _{Q}\}}. \end{aligned}$$
(27)

Applying the binomial theorem, we have

$$\begin{aligned} \prod \limits _{r_k \notin {\mathcal {D}}_{l}}\!\!\text{ F }_{\gamma _{s {r_k}}|g_{sp}} (\gamma _{th}^{\mathrm{R}})=\! \sum \limits _{k=0}^{K-l}\! \left( {\begin{array}{c}K-l\\ k\end{array}}\right) \!\! \left( -\frac{\lambda _{cr}e^{-\xi }}{\xi \gamma _I\!+\!\lambda _{cr}}\right) ^{k}. \end{aligned}$$
(28)

Since the PDF of \(g_{sp}\) is expressed as

$$\begin{aligned} f_{g_{sp}}(z) =\lambda _{sp}e^{-\lambda _{sp}z} \text{ for } z>0, \end{aligned}$$
(29)

we have

$$\begin{aligned} \alpha =\int _{0}^\infty \sum \limits _{k=0}^{K-l} \left( {\begin{array}{c}K-l\\ k\end{array}}\right) (-1)^k \left( \frac{\lambda _{cr}e^{-\xi }}{\xi \gamma _I+\lambda _{cr}}\right) ^{k+l} \lambda _{sp} e^{-\lambda _{sp}z}dz. \end{aligned}$$
(30)

Since \(\min \{\gamma /g_{sp}, \gamma _{Q}\}=\gamma _{Q}\) if \(g_{sp}<\gamma /\gamma _{Q}\) and \(\min \{\gamma /g_{sp}, \gamma _{Q}\}=\gamma /g_{sp}\) if \(g_{sp}\ge \gamma /\gamma _{Q}\), we divide the interval \([0, \infty )\) into two intervals, \([0, \gamma /\gamma _{Q})\) and \([\gamma /\gamma _{Q}, \infty )\). We do the integration over the two intervals respectively. Applying the identity [19, Eq. (3.462.16)], the final result is obtained.

Appendix 2: Proof of Proposition 2

In (7), the CDF of \(\text{ F }_{\gamma _{{r_k}d}|g_{cd}}(\gamma _{th}^{\mathrm{D}})\) is obtained as

$$\begin{aligned} \text{ F }_{\gamma _{{r_k}d}|g_{cd}}(\gamma _{th}^{\mathrm{D}})&=\text{ Pr }\left[ \gamma _{{r_k}d}<\gamma _{th}^{\mathrm{D}}\right] \nonumber \\ {}&=\text{ Pr }\left[ g_{r_k d}\!<\!\frac{\gamma _{th}^{\mathrm{D}} (\gamma _I g_{cd}\!+\!1)}{\min \{\gamma /g_{r_kp}, \gamma _{Q}\}}\right] \end{aligned}$$
(31)

Given \(g_{cd}\), both \(g_{{r_k}d}\) and \(g_{{r_k}p}\) are exponential RVs in (7). The PDF of \(g_{r_kj}\), \(j\in \{d, p\}\), is expressed as

$$\begin{aligned} f_{g_{r_kj}}(x) =\lambda _{rj}e^{-\lambda _{rj}x} \text{ for } x>0. \end{aligned}$$
(32)

Since \(\min \{\gamma /g_{r_kp}, \gamma _{Q}\}=\gamma _{Q}\) if \(g_{r_kp}<\gamma /\gamma _{Q}\) and \(\min \{\gamma /g_{r_k p}, \gamma _{Q}\}=\gamma /g_{r_k p}\) if \(g_{r_kp}\ge \gamma /\gamma _{Q}\), we have

$$\begin{aligned} \text{ F }_{\gamma _{{r_k}d}|g_{cd}}(\gamma _{th}^{\mathrm{D}})&= \int _{0}^{\frac{\gamma }{\gamma _{Q}}} \left( 1-e^{-\zeta /\gamma _{Q}}\right) \lambda _{rp} e^{-\lambda _{rp}x}dx \nonumber \\&+\int _{\frac{\gamma }{\gamma _{Q}}}^\infty \left( 1-e^{-\zeta x/\gamma }\right) \lambda _{rp} e^{-\lambda _{rp}x}dx \nonumber \\&= 1-e^{-\zeta /\gamma _{Q}}\left( 1-\frac{\zeta }{\lambda _{rp}\gamma +\zeta } \cdot e^{-\lambda _{rp} \gamma /\gamma _{Q}}\right) \end{aligned}$$
(33)

where

$$\begin{aligned} \zeta =\lambda _{rd}\gamma _{th}^{\mathrm{D}}(\gamma _I g_{cd}+1). \end{aligned}$$
(34)

Thus, we have

$$\begin{aligned}&\prod \limits _{r_k \in {\mathcal {D}}_{l}} \text{ F }_{\gamma _{{r_k}d}|g_{cd}} (\gamma _{th}^{\mathrm{D}})=\left[ \text{ F }_{\gamma _{{r_k}d}|g_{cd}} (\gamma _{th}^{\mathrm{D}})\right] ^l\nonumber \\&\quad =\left[ 1-e^{-\zeta /\gamma _{Q}} \left( 1-\left( 1-\frac{\lambda _{rp}\gamma }{\lambda _{rp}\gamma +\zeta }\right) \cdot e^{-\lambda _{rp} \gamma /\gamma _{Q}}\right) \right] ^l\nonumber \\&\quad =\sum \limits _{i=0}^{l}\!\sum \limits _{j=0}^{i}\!\sum \limits _{m=0}^{j}\!\! \left( {\begin{array}{c}l\\ i\end{array}}\right) \!\!\left( {\begin{array}{c}i\\ j\end{array}}\right) \!\!\left( {\begin{array}{c}j\\ m\end{array}}\right) \!(-1)^{i+j+m} \!\!\left( \!\frac{\lambda _{rp} \gamma }{\zeta \!+\!\lambda _{rp} \gamma }\!\right) ^{\!\!m}\!\!\!e^{-\frac{i\zeta +j\lambda _{rp} \gamma }{\gamma _{Q}}} \end{aligned}$$
(35)

where the second equation is obtained by applying the binomial theorem for three times. Since the PDF of \(g_{cd}\) is

$$\begin{aligned} f_{g_{cd}}(x) =\lambda _{cd}e^{-\lambda _{cd}x} \text{ for } x>0, \end{aligned}$$
(36)

we have

$$\begin{aligned} \beta =\int _{0}^\infty \left[ \text{ F }_{\gamma _{{r_k}d}|g_{cd}} (\gamma _{th}^{\mathrm{D}})\right] ^l \cdot \lambda _{cd}e^{-\lambda _{cd}x}dx \end{aligned}$$
(37)

Substituting (35) into (37) and after some mathematical manipulations, the final result is obtained.

Appendix 3: Proof of Theorem 1

Reformulate (5) as follows

$$\begin{aligned} P_{\mathrm{out}}^{\mathrm{react}}&= \text{ E }_{g_{sp}}\text{ E }_{g_{cd}} \left[ \sum \limits _{l = 0}^K \sum \limits _{{\mathcal {D}}_{l}} \prod \limits _{r_k \in {\mathcal {D}}_{l}}(1-\phi '_k) \psi _k\prod \limits _{r_k \notin {\mathcal {D}}_{l}}\phi '_k\right] \end{aligned}$$
(38)

where

$$\begin{aligned} \phi '_k=\text{ F }_{\gamma _{s {r_k}}|g_{sp}}(\gamma _{th}^{\mathrm{R}}). \end{aligned}$$
(39)

From the binomial theorem, we have

$$\begin{aligned} P_{\mathrm{out}}^{\mathrm{react}}&= \text{ E }_{g_{sp}}\text{ E }_{g_{cd}} \prod \limits _{r_k \in {\mathcal {R}}} \left[ (1-\phi '_k)\psi _k+\phi '_k\right] \nonumber \\&= \text{ E }_{g_{sp}}\text{ E }_{g_{cd}}\prod \limits _{r_k \in {\mathcal {R}}} \left[ (1-\psi _k)\phi '_k+\psi _k\right] \end{aligned}$$
(40)

Employing the binomial theorem, (40) is expressed as

$$\begin{aligned} P_{\mathrm{out}}^{\mathrm{react}}\!=\! \sum \limits _{l = 0}^K \sum \limits _{{\mathcal {D}}_{l}} \text{ E }_{g_{sp}} \!\left[ \prod \limits _{r_k \in {\mathcal {D}}_{l}} \phi '_k\!\right] \! \text{ E }_{g_{cd}}\! \left[ \! \prod \limits _{r_k \in {\mathcal {D}}_{l}}(1-\psi _k)\!\! \prod \limits _{r_k \notin {\mathcal {D}}_{l}}\psi _k\!\right] \end{aligned}$$
(41)

From (16) and (41), we have

$$\begin{aligned} P_{\mathrm{out}}^{\mathrm{proact}}-P_{\mathrm{out}}^{\mathrm{react}}&= \sum \limits _{l = 0}^K \sum \limits _{{\mathcal {D}}_{l}} \text{ E }_{g_{cd}}\!\left[ \! \prod \limits _{r_k \in {\mathcal {D}}_{l}}(1-\psi _k)\!\!\prod \limits _{r_k \notin {\mathcal {D}}_{l}}\psi _k\!\right] \! \nonumber \\&\times \,\, \text{ E }_{g_{sp}} \!\left[ \prod \limits _{r_k \in {\mathcal {D}}_{l}} \text{ F }_{\gamma _{s {r_k}}|g_{sp}}(\gamma _{th}^{\mathrm{D}}) -\text{ F }_{\gamma _{s {r_k}}|g_{sp}}(\gamma _{th}^{\mathrm{R}})\!\right] \end{aligned}$$
(42)

The function \(\text{ F }_{\gamma _{s {r_k}}|g_{sp}}(x)\) is monotonically increasing with respect to \(x\). Thus, we obtain the OP relationship of the proactive and reactive DF schemes.

Appendix 4: Proof of Corollary 2

We differentiate \(\text{ F }_{\gamma _{s{r_k}}|g_{sp}}(\gamma _{th}^{\mathrm{R}})\) with respect to \(\gamma _{th}^{\mathrm{R}}\),

$$\begin{aligned} \frac{\partial \text{ F }_{\gamma _{s{r_k}}|g_{sp}} (\gamma _{th}^{\mathrm{R}})}{\partial \gamma _{th}^{\mathrm{R}}}&\!=\! \frac{\lambda _{sr}\lambda _{cr}e^{-\xi } \left( \frac{\gamma _I}{\xi \gamma _I+\lambda _{cr}}+1\right) }{\lambda _{sr}\gamma _{th}^{\mathrm{R}}\gamma _I\! +\!\lambda _{cr}\min \left\{ \frac{\gamma }{g_{sp}}, \gamma _{\text{ Q }}\right\} }. \end{aligned}$$
(43)

Thus, we have

$$\begin{aligned} \frac{\partial \text{ F }_{\gamma _{s{r_k}}|g_{sp}} (\gamma _{th}^{\mathrm{R}})}{\partial \gamma _{th}^{\mathrm{R}}}>0. \end{aligned}$$
(44)

From (40), we know

$$\begin{aligned} \frac{\partial P_{\mathrm{out}}^{\mathrm{react}}}{\partial \gamma _{th}^{\mathrm{R}}}>0. \end{aligned}$$
(45)

According to (42), the outage gap can be rewritten as

$$\begin{aligned} P_{\mathrm{out}}^{\mathrm{GAP}}= \left\{ \begin{array}{ll} 1-\frac{P_{\mathrm{out}}^{\mathrm{react}}}{P_{\mathrm{out}}^{\mathrm{proact}}}; &{}\text {if }\gamma _{th}^{\mathrm{R}}\le \gamma _{th}^{\mathrm{D}} \\ 1-\frac{P_{\mathrm{out}}^{\mathrm{proact}}}{P_{\mathrm{out}}^{\mathrm{react}}}; &{}\text {if }\gamma _{th}^{\mathrm{R}}>\gamma _{th}^{\mathrm{D}} \end{array}\right. \end{aligned}$$
(46)

Now, the gradient of outage gap is given as

$$\begin{aligned} \frac{\partial P_{\mathrm{out}}^{\mathrm{GAP}}}{\partial \gamma _{th}^{\mathrm{R}}}=\!\! \left\{ \begin{array}{ll} \!\!-\frac{1}{P_{\mathrm{out}}^{\mathrm{proact}}} \cdot \frac{\partial P_{\mathrm{out}}^{\mathrm{react}}}{\partial \gamma _{th}^{\mathrm{R}}}; \!\!&{}\gamma _{th}^{\mathrm{R}}\le \gamma _{th}^{\mathrm{D}} \\ \!\!\frac{P_{\mathrm{out}}^{\mathrm{proact}}}{\left( P_{\mathrm{out}}^{\mathrm{react}}\right) ^2} \cdot \frac{\partial P_{\mathrm{out}}^{\mathrm{react}}}{\partial \gamma _{th}^{\mathrm{R}}}; \!\!&{}\gamma _{th}^{\mathrm{R}}>\gamma _{th}^{\mathrm{D}} \end{array}\right. \end{aligned}$$
(47)

The final result is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Song, J., Li, M. et al. Outage Probability Gap Between Proactive and Reactive Opportunistic Cognitive Relay Networks. Wireless Pers Commun 82, 2417–2429 (2015). https://doi.org/10.1007/s11277-015-2356-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2356-8

Keywords