Skip to main content
Log in

Performance Analysis of Rayleigh Fading Channels with Hybrid Correlation Effects with 2-Branch Maximal Ratio Combining

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper deals with the impact of channel estimation errors on the capacity of correlated fading MIMO channels. In this paper, closed-form expressions for cumulative density function and probability density function for Rayleigh fading channels with combined effects of impairments due to combining errors and branch correlation errors for 2-branch case are derived. We also derive closed-form expressions for capacities per unit bandwidth for fading channels with effects of hybrid correlation for two branch maximal ratio combining diversity reception case for different adaptation policies. We show that hybrid correlation leads to increased performance degradation when combining correlation is low and branch correlation is high and vice versa. Even though hybrid correlation exists between branches, capacity gains are significantly more for adaptation policies especially for OPRA policy as compared to other policies for both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bolcskei, H., & Zurich, E. T. H. (2006). MIMO-OFDM wireless systems: Basics, perspectives, and challenges. IEEE Transactions on Wireless Communications, 13(4), 31–37.

    Article  Google Scholar 

  2. Duman, T. M., & Ghrayeb, A. (2007). Coding for MIMO communication systems. New York: Wiley.

    Book  MATH  Google Scholar 

  3. Zhou, X., Lamahewa, T. A., Sadeghi, P., & Durrani, S. (2008). Capacity of MIMO systems: Impact of spatial correlation with channel estimation errors. In 11th IEEE Singapore international conference on communication systems (ICCS), Singapore (pp. 817–822).

  4. Lee, D., & Kim, K. (2010). Sum-rate capacity analysis of the MIMO broadcast scheduling system with zero-forcing receivers under channel estimation error. IEEE Communication Letters, 14(3), 223–225.

    Article  Google Scholar 

  5. Wang, H. S., & Zeng, G. H. (2007). Asymptotically analyzing the effect of channel estimation error on multiuser channel capacity. In Proceedings of international symposium on intelligent signal processing and communication systems, Xiamen, China (pp. 380–383).

  6. Wang, J., Jin, S., Liu, Z., Wang, Y., & Yu, X. (2006). Analysis of the sum capacity of MIMO broadcast systems with channel estimation errors. In Proceedings of IEEE GLOBECOM 2006, Sanfrancisco, CA (pp. 1–5).

  7. Anese, E. D., Assalini, A., & Pupolin, S. (2009). On the effect of imperfect channel estimation upon the capacity of correlated MIMO fading channels. In IEEE 69th vehicular technology conference (VTC), Barcelona, Spain (pp.1–5).

  8. Hayes, J. F. (1968). Adaptive feedback communications. IEEE Transactions on Communication Technology, 16(1), 29–34.

    Article  Google Scholar 

  9. Cavers, J. K. (1972). Variable-rate transmission for Rayleigh fading channels. IEEE Transactions on Communications, 20(1), 15–22.

    Article  MathSciNet  Google Scholar 

  10. Webb, W. T., & Steele, R. (1995). Variable rate QAM for mobile radio. IEEE Transactions on Communications, 43(1), 2223–2230.

    Article  Google Scholar 

  11. Vucetic, B. (1991). An adaptive coding scheme for time-varying channels. IEEE Transactions on Communications, 39(5), 653–663.

    Article  Google Scholar 

  12. Sampei, S., Morinaga, N., & Kamio, Y. (1995). Adaptive modulation/TDMA with a BDDFE for 2 Mbit/s multimedia wireless communication systems. In Proceedings of IEEE vehicular technology conference (VTC’95), Chicago, IL (pp. 311–315).

  13. Andrews, A., & Khatibih, M. (2011). Performance of adaptive modulation with maximum ratio combining in different practical scenarios. International Journal of Advanced Science and Engineering Technology, 2(1), 81–86.

    Google Scholar 

  14. Yang, L., & Alouini, M. S. (2011). On the BER and capacity analysis of MIMO MRC systems with channel estimation error. In IEEE 7th international conference on wireless and mobile computing, networking and communications (WiMob), Shanghai, China (pp. 193–198).

  15. Thian, B. S., & Goldsmith, A. (2011). Decoding for MIMO systems with correlated channel estimation errors. In 49th annual allerton conference on communication, control, and computing, Monticello, IL (pp. 524–530).

  16. Jakes, W. (1994). Microwave mobile communications (2 ed.). Piscataway, NJ: IEEE Press.

    Book  Google Scholar 

  17. Molisch, A. F. (2011). Wireless communications (2nd ed.). New York: Wiley.

    Google Scholar 

  18. Al-Qahtani, F. S., Zummo, S. A., Gurung, A. K., & Hussain, Z. M. (2009). Spectral efficiency of maximum ratio combining (MRC) over slow fading with estimation errors. Digital Signal Processing, 20, 85–96.

    Article  Google Scholar 

  19. Salo, J., Suvikunnas, P., El-Sallabi, H. M., & Vainikainen, P. (2004). Approximate distribution of capacity of Rayleigh fading MIMO channels. Electronic Letters, 40(12), 741–742.

    Article  Google Scholar 

  20. Chiani, M., Win, M. Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Transactions on Information Theory, 49(10), 2363–2371.

    Article  MATH  MathSciNet  Google Scholar 

  21. Kang, M., & Alouini, M.-S. (2006). Capacity of correlated MIMO Rayleigh channels. IEEE Wireless Communications, 5(1), 143–155.

    Article  Google Scholar 

  22. Smith, D. B., Abhayapala, T. D., & Aubrey, T. (2004). Generalized (M, NR) MIMO Rayleigh channel model for nonisotropic scatterer distributions. In Proceedings of workshop on the application of radio science, (WARS), Hobart, Australia.

  23. Papoulis, A. (1991). Probability random variables, and stochastic processes (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  24. Alouini, M., & Goldsmith, A. (1999). Capacity of Rayleigh fading channels under different adaptative transmission and diversity combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  25. Gradshteyn, I., & Ryzhik, I. (1994). Table of Integrals, series, and products (5th ed.). San diego, CA: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhyacharan Bhaskar.

Appendix 1

Appendix 1

Figure 1a, b, through Fig. 5a, b show the system simulation through the steps discussed below.

Step 1:

The base for the simulation is to find out numerical instantaneous SNR values (γ). This is obtained from the CDF of the received instantaneous SNR γ for (1) combining errors at the output of a M-branch MRC output (when the pilot and message signals are not perfectly correlated, i.e., 0 < ρ < 1) which is given in (3), (2) branch correlation at the output of two branch system given in (1), (3) combined CE & BC hybrid correlation of two branch system given in (4) as

$$ \mathop F\nolimits_{\text{M}}^{{ ( {\text{CE)}}}} (\gamma ) = 1 - \exp \left( { - \frac{\gamma }{\varGamma }} \right)\sum\limits_{n = 0}^{M - 1} {\left( \begin{gathered} M - 1 \hfill \\ \quad n \hfill \\ \end{gathered} \right)\rho^{2n} \left( {1 - \rho^{2} } \right)^{M - 1 - n} \sum\limits_{k = 0}^{n} {\frac{1}{k!}} \left( {\frac{\gamma }{\varGamma }} \right)}^{k} , $$
(17)
$$ \mathop {\text{F}}\nolimits_{ 2}^{{ ( {\text{BC)}}}} (\gamma ) = 1 - \frac{1}{2\varepsilon }\left[ {(1 + \varepsilon )\exp \left( { - \frac{\gamma }{\varGamma (1 + \varepsilon )}} \right) - (1 - \varepsilon )\exp \left( { - \frac{\gamma }{\varGamma (1 - \varepsilon )}} \right)} \right] , $$
(18)

and

$$ \begin{aligned} F_{2}^{{({\text{CE}}\& {\text{BC}})}} (\gamma ) =\, & \frac{{(1 - \rho^{2} )(1 + \varepsilon )}}{{2\varepsilon^{2} }}\left[ {\exp \left( {\frac{ - \gamma }{\varGamma }} \right) - (1 + \varepsilon )\exp \left( {\frac{ - \gamma }{\varGamma (1 + \varepsilon )}} \right)} \right] - \frac{{(1 - \rho^{2} )(1 - \varepsilon )}}{{2\varepsilon^{2} }}\left[ {(1 - \varepsilon )\exp \left( {\frac{ - \gamma }{\varGamma (1 - \varepsilon )}} \right) - \exp \left( {\frac{ - \gamma }{\varGamma }} \right)} \right] \\ & + \frac{{\rho^{2} (1 + \varepsilon )^{2} \varGamma }}{{2\varepsilon^{3} }}\left[ {\exp \left( {\frac{ - \gamma }{\varGamma }} \right) - (1 + \varepsilon )\exp \left( {\frac{ - \gamma }{\varGamma (1 + \varepsilon )}} \right)} \right] + \frac{{\rho^{2} (1 + \varepsilon )}}{{2\varepsilon^{2} }}\left[ {\varGamma \exp \left( {\frac{ - \gamma }{\varGamma }} \right) + \gamma \exp \left( {\frac{ - \gamma }{\varGamma }} \right)} \right] \\ & + \frac{{\rho^{2} (1 - \varepsilon )^{2} }}{{2\varepsilon^{3} }}\left[ {(1 - \varepsilon )\exp \left( {\frac{ - \gamma }{\varGamma (1 - \varepsilon )}} \right) - \exp \left( {\frac{ - \gamma }{\varGamma }} \right)} \right] + \frac{{\rho^{2} (1 - \varepsilon )}}{{2\varepsilon^{2} \varGamma }}\left[ {\varGamma \exp \left( {\frac{ - \gamma }{\varGamma }} \right) + \gamma \exp \left( {\frac{ - \gamma }{\varGamma }} \right)} \right] \\ \end{aligned} $$
(19)

Step 2:

The CDF is equated to a uniform random variable, \( U \in (0,1) \). Then 106 Uniform random numbers are generated using rand command in MATLAB.

Step 3:

Using the above values of U, the maximum and minimum values of U are found out from the array in which 106 Uniform random numbers (U) are stored.

Step 4:

The maximum value of received SNR (γmax), and the minimum value of received SNR (γmin) are found out for different values of Individual Branch SNRs(\( \bar{\gamma } \)), different values of Correlation (ρ) and for different number of diversity order (M) which is tabulated in Table 1.

Table 1 Impairments due to hybrid correlation errors

Step 5:

Using the maximum and minimum values of instantaneous SNR (γ), the capacity for all four policies is obtained for different values of Individual Branch SNRs (\( \bar{\gamma } \)), different values of Correlation (ρ), and for different number of diversity orders (M) with step size 0.001.

Step 6:

The simulation results for all four policies for M = 2 and M = 3, M = 4 and M = 5 at ρ = 0.5 are plotted for (1) different values of Individual Branch SNRs \( \bar{\gamma } \), and for (2) different values of correlation ρ at \( \bar{\gamma } \) = 5 dB and compared with the analytical results for the above four cases. Figures 1a,1b through 5a,5b show the analytical vesus simulation results for impairments due to combining errors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subhashini, J., Bhaskar, V. Performance Analysis of Rayleigh Fading Channels with Hybrid Correlation Effects with 2-Branch Maximal Ratio Combining. Wireless Pers Commun 83, 673–688 (2015). https://doi.org/10.1007/s11277-015-2416-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2416-0

Keywords

Navigation