Skip to main content
Log in

Design and Analysis of Cavity Backed Annular Ring Microstrip Antenna for Personal Wireless Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Effect of cylindrical metallic cavity enclosure on resonant frequency of the annular ring microstrip antenna (ARMSA) having air-gap between substrate and ground plane is studied. The proposed antenna is analyze theoretically using modal expansion cavity model and circuit theory concept and verified by simulated results using Ansoft HFSS simulation software and experimental results. Theoretical and measured result of input characteristics shows good agreement with simulated results. Effect of cylindrical metallic cavity backing on resonance frequency of ARMSA is investigated for different air gap height and inner patch radius. The patch miniaturization of about 15 % is achieved using cavity backed ARMSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carver, K. R. (1981). Microstrip antenna technology. IEEE Transactions on Antenna and Propagation, 29, 2–24.

    Article  Google Scholar 

  2. Gautam, A. K., Yadav, S., & Kanaujia, B. K. (2013). A CPW-fed compact UWB microstrip antenna. IEEE Transactions on Antenna and Wireless Propagation Letters, 12, 151–154.

    Article  Google Scholar 

  3. Chew, W. C. (1982). A broad-band annular-ring microstrip antenna. IEEE Transactions on Antenna and Propagation, 5, 918–922.

    Article  Google Scholar 

  4. Kanaujia, B. K., & Vishvakarma, B. R. (2004). Analysis of Gunn integrated annular ring microstrip antenna. IEEE Transactions on Antenna and Propagation, 52(1), 88–97.

    Article  Google Scholar 

  5. Kanaujia, B. K., Singh, A. K., & Vishvakarma, B. R. (2008). IMPATT diode integrated annular ring microstrip antenna. Microwave and Optical Technology Letters, 50(6), 1491–1495.

    Article  Google Scholar 

  6. Kanaujia, B. K., & Vishvakarma, B. R. (2003). Analysis of two concentric annular ring microstrip antenna. Microwave and Optical Technology Letters, 36(2), 104–108.

    Article  Google Scholar 

  7. Wong, K. L. (2011). Compact and broadband microstrip antennas. London: Wiley.

    Google Scholar 

  8. Zavosh, F., & Aberle, J. T. (1996). Improving the performance of microstrip patch antennas. IEEE Transactions on Antenna and Propagation, 38, 7–12.

    Article  Google Scholar 

  9. Kumar, A., & Hristov, H. D. (1989). Microwave cavity antenna. Norwood, MA: Artech House.

    Google Scholar 

  10. Volakis, J. L. (1992). A scheme to lower the resonant frequency of the microstrip patch antenna. IEEE Microwave and Guided Wave Letters, 2, 292–293.

    Article  Google Scholar 

  11. Aberle, J. T. (1991). On the use of metallized cavity backing microstrip antennas. Antennas and Propagation Society International Symposium, 1, 60–63.

  12. Noghanian, S., & Shafai, L. (1998). Control of microstrip antenna radiation characteristics by ground plane size and shape. IEE Proceedings on Microwaves, Antennas and Propagation, 145, 207–212.

    Article  Google Scholar 

  13. Karmakar, N. C. (2002). Investigations into a cavity backed circular patch antenna. IEEE Transactions on Antenna and Propagation, 50, 1706–1714.

    Article  Google Scholar 

  14. Hsieh, W. T., Chang, T. H., & Kiang, J. F. (2012). Dual-band circularly polarized cavity-backed annular slot antenna for GPS receiver. IEEE Transactions on Antennas and Propagation, 60(4), 2076–2080.

    Article  Google Scholar 

  15. Biswas, M., Siddiqui, J. Y., Guha, D., & Yahia, M. M. A. (2006). Effect of a cylindrical cavity on the resonance of a circular microstrip patch with variable air-gap. IEEE Antennas and Wireless Propagation Letters, 5, 418–420.

    Article  Google Scholar 

  16. Iqbal, S. S., Biswas, M., Siddiqui, J. Y., & Guha, D. (2006). Performance of cavity backed inverted microstrip broadband antenna. Indian Journal of Radio and Space Physics, 35, 54–58.

    Google Scholar 

  17. Karmakar, N. C. (2007). Miniaturization and bandwidth enhancement of a cavity backed circular microstrip patch antenna. International Journal of RF and Microwave Computer-Aided Engineering, 17(3), 311–319.

    Article  Google Scholar 

  18. Guha, D., & Siddiqui, J. Y. (2004). Effect of a cavity enclosure on the resonant frequency of inverted microstrip circular patch antenna. IEEE Transactions on Antennas and Propagation, 52(8), 2177–2180.

    Article  Google Scholar 

  19. Karmakar, N. C. (2002). Investigations into a cavity-backed circular-patch antenna. IEEE Transactions on Antennas and Propagation, 50(12), 1706–1715.

    Article  Google Scholar 

  20. Guha, D. (2001). Resonant frequency of circular microstrip antennas with and without air gaps. IEEE Transactions on Antennas and Propagation, 49(1), 55–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Kumar Kanaujia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Gangwar, R.K., Kanaujia, B.K. et al. Design and Analysis of Cavity Backed Annular Ring Microstrip Antenna for Personal Wireless Communication. Wireless Pers Commun 83, 2647–2656 (2015). https://doi.org/10.1007/s11277-015-2561-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2561-5

Keywords

Navigation