Skip to main content
Log in

A Compact Multiband Hybrid Fractal Antenna for Multistandard Mobile Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a compact Multiband hybrid fractal antenna designed for mobile wireless applications it has planar structure and suitable for mobile applications at low cost. The proposed antenna structure is obtained by integrating a Koch curve and Minkowski curve. It exhibits multiband behavior, acceptable values of return loss, VSWR and gain in-spite of its compact size and less complexity. The proposed antenna design has been examined up to 2nd iteration of the new fractal geometry. The simulated results exhibited seven bands of operation covering some important frequency bands like GPS (L1 = 1227.60 MHz), bluetooth (2.41–2.49 GHz) of ISM band, WLAN 802.11 a/b (5.15–5.35 GHz) and other bands covers applications like mobile/fixed satellite and aeronautical navigation (3.876–4.375, 6.6188–7.0045, 7.9698–8.3373 and 9.1648–9.6214 GHz). Proposed antenna is designed by using scripting method of HFSS using MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee, S. H. (2011). Multiband antenna for wireless USB dongle applications. IEEE Antennas Wireless Propagation Letter, 10, 25–28.

    Article  Google Scholar 

  2. Mandelbort, B. B. (1983). The fractal geometry of nature (pp. 152–180). San Francisco: Freeman.

    Google Scholar 

  3. Gianvittorio, J. P., & Rahmat-Samii, Y. (2002). Fractals antennas: A novel antenna miniaturization technique and applications. IEEE Antennas and Propagation Magazine, 44, 20–36.

    Article  Google Scholar 

  4. Punete, C., Aliaada, B., Romeu, J., & Cardama, R. (1998). On the behavior of the Sierpinski multiband antenna. IEEE Transaction on Antenna Propagation, 46(4), 517–524.

    Article  Google Scholar 

  5. Puente, C., Romeu, J., Bartoleme, R., & Pous, R. (1996). Perturbation of the Sierpinski antenna to allocate operating bands. Electronics Letters, 32, 2186–2188.

    Article  Google Scholar 

  6. Azaro, R., De Natale, F., Donelli, M., Zeni, E., & Massa, A. (2006). Synthesis of a prefractal dual-band monopolar antenna for GPS applications. IEEE Antennas Wireless Propagation Letter, 5, 361–364.

    Article  Google Scholar 

  7. Azaro, R., Viani, F., Lizzi, L., Zeni, E., & Massa, A. (2009). A monopolar quad-band antenna based on a Hilbert self-affine prefractal geometry. IEEE Antennas Wireless Propagation Letter, 8, 177–180.

    Article  Google Scholar 

  8. Lizzi, L., Viani, F., Zeni, E., & Massa, A. (2009). A DVBH/GSM/UMTS planar antenna for multimode wireless devices. IEEE Antennas Wireless Propagation Letter, 8, 568–571.

    Article  Google Scholar 

  9. Jamil, A., Yusoff, M. Z., Yahya, N., & Zakariya, M. A. (2011). A compact multiband hybrid Meander–Koch fractal antenna for WLAN USB dongle. In Open Systems (ICOS), 2011 IEEE Conference on (pp. 290–293). doi:10.1109/ICOS.2011.6079295.

  10. Azaro, R., Debiasi, L., Zeni, E., Benedetti, M., Rocca, P., & Massa, A. (2009). A hybrid prefractal three-band antenna for multistandard mobile wireless applications. IEEE Antennas Wireless Propagation Letter, 8, 905–908.

    Article  Google Scholar 

  11. Azari, A., Ismail, A., Sali, A., & Hashim, F. (2013). A new super wideband fractal monopole-dielectric resonator antenna. IEEE Antennas Wireless Propagation Letter, 12, 1014–1016.

    Article  Google Scholar 

  12. Choukiker Y. K., & Behera, S. K. (2011). Design of wideband fractal antenna with combination of fractal geometries. In IEEE Conference Publication: ICICS, pp. 1–3.

  13. Choukiker, Y. K., Sharma, S. K., & Behera, S. K. (2014). Hybrid fractal shape planar monopole antenna covering multiband wireless communication with MIMO implementation for handheld mobile devices. IEEE Transactions on Antennas and Propagation, 62, 1483–1488.

    Article  Google Scholar 

  14. Puente Baliarda, C., et al. (2000). An Iterative model for fractal antenna application on the Sierpinski gasket antenna. IEEE Transactions on Antennas and Propagation, 48(5), 713–719.

    Article  Google Scholar 

  15. Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, 45, 38–57.

    Article  Google Scholar 

  16. Vinoy, K. J. (2002). Fractal shaped antenna elements for wide and multiband wireless applications. Pennsylvania: Thesis.

    Google Scholar 

  17. Vinoy, K. J., Abhraham, J. K., & Varadan, V. K. (2003). On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves. IEEE Transactions on Antenna and Propagation, 51, 2296–2303.

    Article  Google Scholar 

  18. Rao, Q., & Geyi, W. (2009). Compact multiband antenna for handheld devices. IEEE Transactions on Antenna and Propagation Letter, 57, 3337–3339.

    Article  Google Scholar 

  19. Lee, Y., & Sun, J. (2009). A new printed antenna for multiband wireless applications. IEEE Antenna Wireless Propagation Letter, 8, 402–405.

    Article  Google Scholar 

  20. Liu, C.-L., Lin, Y.-F., Liang, C.-M., Pan, S.-C., & Chen, H.-M. (2010). Miniature internal penta-band monopole antenna for mobile phone. IEEE Transactions on Antenna and Propagation, 58(3), 1008–1011.

  21. Karli, R., & Ammor, H. (2013). A simple and original design of multiband microstrip patch antenna for wireless communication. IJMA, 2(2), 41–44.

    Google Scholar 

  22. Kumar, R. A., Choukiker, Y. K., & Behera, S. K. (2012). Design of hybrid fractal antenna for UWB applications. In IEEE ICCEET (International Conference on Computing, Electronics and Electrical Technologies), pp. 691–693.

  23. Chen, Y.-C., Chang, H.-P., & Hou, P. (2011). Microstrip fed hybrid slot and strip antenna for multiband handset applications. In IEEE Antenna Technology (iWAT), International Workshop, pp. 449–452.

  24. Gao, Y., Ooi, B.-L., Popov, A. P., & Sing, C.-H. (2006). Dual band hybrid antenna for WLAN applications. In IEEE Antennas and Propagation Society International Symposium, pp. 997–980.

  25. Chen, W.-L., Wang, G.-M., & Zhang, C.-X. (2008). Small-size microstrip patch antennas combining Koch and Sierpinski fractal-shapes. IEEE Antennas and Wireless Propagation Letters, 7, 738–740.

    Article  Google Scholar 

  26. Balanis, C. A. (1997). Antenna theory: Analysis and design (2nd ed.). London: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadwinder Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Singh, S. A Compact Multiband Hybrid Fractal Antenna for Multistandard Mobile Wireless Applications. Wireless Pers Commun 84, 57–67 (2015). https://doi.org/10.1007/s11277-015-2593-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2593-x

Keywords

Navigation