Skip to main content
Log in

Iterative Channel Estimation and Detection for High-Mobility MIMO-OFDM Systems: Mitigating Error Propagation by Exploiting Error Information

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Joint channel estimation and data detection are always challenging problems for high mobility multiple-input multiple-output orthogonal frequency division multiplexing systems. Existing iterative schemes focus on the performance improvement from the correct ones, ignoring error propagation from the incorrect ones. To deal with this problem, we propose a new iterative channel estimation and detection scheme that reduces the unexpected effects of both detection errors and channel estimation errors. The interference in channel estimation induced by detection errors is analyzed and transformed as part of the noise, which is filtered out by Kalman estimator using the derived covariance of both the channel and data errors in detection. Besides, to minimize the detection error caused by channel estimation errors, we propose a new detection algorithm with an optimized weight, which is obtained by the error covariance of the estimated channels and the detected data. Furthermore, matrix calculations and parameter approximations are performed to reduce computational complexity. Extensive simulation results are also presented to demonstrate the significant performance improvement in joint channel estimation and data detection with the proposed iterative schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arslan, H. (2007). Channel estimation for wireless OFDM systems. IEEE Surveys and Tutorials, 9(2), 18–48.

    Article  Google Scholar 

  2. Mostofi, Y., & Cox, C. D. (2005). ICI mitigation for pilot-aided OFDM mobile systems. IEEE Transactions on Wireless Communications, 4(2), 765–774.

    Article  Google Scholar 

  3. Choi, S. Y., Voltz, J. P., & Cassara, A. F. (2001). On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels. IEEE Transactions on Communications, 49(8), 1375–1384.

    Article  MATH  Google Scholar 

  4. Panayirci, E., Senol, H., & Poor, V. H. (2010). Joint channel estimation, equalization, and data detection for OFDM systems in the presence of very high mobility. IEEE Transactions on Signal Processing, 58(8), 4225–4238.

    Article  MathSciNet  Google Scholar 

  5. Hijazi, H., & Ros, L. (2009). Polynomial estimation of time-varying multipath gains with intercarrier interference mitigation in OFDM systems. IEEE Transactions on Vehicular Technology, 58(1), 140–151.

    Article  Google Scholar 

  6. Hijazi, H., & Ros, L. (2010). Joint data QR-detection and Kalman estimation for OFDM time-varying Rayleigh channel complex gains. IEEE Transactions on Communications, 58(1), 170–178.

    Article  Google Scholar 

  7. Hijazi, H., Simon, P. E., Lienard, M., et al. (2010). Channel estimation for MIMO-OFDM systems in fast time-varying environments. In 2010 4th international symposium on communications, control and signal processing (ISCCSP). IEEE Press, pp. 1–6.

  8. Pena-Campos, F., Carrasco-Alvarez, R., Longoria-Gandara, O., et al. (2013). Estimation of fast time-varying channels in OFDM systems using two-dimensional prolate. IEEE Transactions on Wireless Communications, 12(2), 898–907.

    Article  Google Scholar 

  9. Al-Naffouri, Y. T., Islam, Z. M. K., Al-Dhahir, N., et al. (2010). A model reduction approach for OFDM channel estimation under high mobility conditions. IEEE Transactions on Signal Processing, 58(4), 2181–2193.

    Article  MathSciNet  Google Scholar 

  10. Movahedian, A., & McGuire, M. (2013). Estimation of fast-fading channels for turbo receivers with high-order modulation. IEEE Transactions on Vehicular Technology, 62(2), 667–678.

    Article  Google Scholar 

  11. Zhao, M., Shi, Z., & Reed, C. M. (2008). Iterative turbo channel estimation for OFDM system over rapid dispersive fading channel. IEEE Transactions on Wireless Communications, 7(8), 3174–3184.

    Article  Google Scholar 

  12. Simon, E., & Khalighi, M. (2013). Iterative Soft-Kalman channel estimation for fast time-varying MIMO-OFDM channels. IEEE Wireless Communications Letters, 2(6), 599–602.

    Article  Google Scholar 

  13. Song, B., Zhang, W., & Gui, L. (2005). Iterative joint channel estimation and signal detection in MIMO OFDM systems. In: Proceedings of 2005 international conference on wireless communications, networking and mobile computing, 2005. IEEE, pp. 39–43.

  14. Sun, S., Wiemer, I., & Ho, K. C. (2003). Training sequence assisted channel estimation for MIMO OFDM. In Proceedings of 2005 international conference on wireless communications and Networking, 2003. IEEE, pp. 38–43.

  15. Li, L., Zhu, G., Wang, D., & Cai, W. (2004). MIMO-OFDM channel estimation based on time-domain window filter. In IEEE 60th vehicular technology conference, 2004 (VTC2004-Fall), pp. 3713–3717.

  16. Zeng, Y., & Ng, S. T. (2004). A semi-blind channel estimation method for multiuser multiantenna OFDM systems. IEEE Transactions on Signal Processing, 52(5), 1419–1429.

    Article  MathSciNet  Google Scholar 

  17. Hardjawana, W., Li, R., Vucetic, B., et al. (2010). A new iterative channel estimation for high mobility MIMO-OFDM systems. In 2010 IEEE 71st vehicular technology conference (VTC 2010-Spring). IEEE Press, pp. 1–5.

  18. Aboutorab, N., Hardjawana, W., & Vucetic, B. (2012). A new iterative Doppler-assisted channel estimation joint with parallel ICI cancellation for high-mobility MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 61(4), 1577–1589.

    Article  Google Scholar 

  19. Stamoulis, A., Diggavi, N. S., & Al-Dhahir, N. (2002). Intercarrier interference in MIMO OFDM. IEEE Transactions on Signal Processing, 50(10), 2451–2464.

    Article  Google Scholar 

  20. Li, F., Xu, Z., & Zhu, S. (2013). Variational-inference-based data detection for OFDM systems with imperfect channel estimation. IEEE Transactions on Vehicular Technology, 62(3), 1394–1399.

    Article  Google Scholar 

  21. Lee, K., & Chun, J. (2007). Symbol detection in V-BLAST architectures under channel estimation errors. IEEE Transactions on Wireless Communications, 6(2), 593–597.

    Article  MathSciNet  Google Scholar 

  22. Hayes, H. M. (2009). Statistical digital signal processing and modeling. New York: Wiley.

    Google Scholar 

  23. Petersen, B. K., & Pedersen, S. M. (2008). The matrix cookbook. Lyngby: Technical University of Denmark.

    Google Scholar 

  24. Kim, H., & Tugnait, K. J. (2010). Turbo equalization for doubly-selective fading channels using nonlinear Kalman filtering and basis expansion models. IEEE Transactions on Wireless Communications, 9(6), 2076–2087.

    Article  Google Scholar 

  25. Hunger, R. (2005). Floating point operations in matrix-vector calculus. Munich: Munich University of Technology, Inst. for Circuit Theory and Signal Processing.

    Google Scholar 

  26. Joel, F. N. (2000). Matrix theory. Mineola: Dover Publications.

    Google Scholar 

  27. Wubben, D., Bohnke, R., & Kuhn, V. (2003). MMSE extension of V-BLAST based on sorted QR decomposition. In 2003 IEEE 58th vehicular technology conference, 2003 (VTC 2003-Fall). IEEE Press, pp. 508–512.

  28. Hua, J. Y., Meng, L. M., Xu, X. J., Wang, D. M., & You, X. H. (2009). Novel scheme for joint estimation of SNR, Doppler, and carrier frequency offset in double-selective wireless channels. IEEE Transactions on Vehicular Technology, 58(3), 1204–1217.

    Article  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by Program for Excellent Talents in Beijing, the National Natural Science Foundation of China under Grant 61372089 and 61201198, and the Beijing Natural Science Foundation under Grant 4132007, 4132015 and 4132019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhe Yang.

Appendix

Appendix

Based on the independence between antennas, we have the covariance of channel matrix \(\mathbf{{H}}_k^{(i)}\) in the \(i{\text {th}}\) step of the SIC detection written as

$$\begin{aligned} {{\varvec{\sigma }}}_{\mathbf{{H}}_k^{(i)}}^2 = {\text{E}}\left\{ {\mathbf{{H}}_k^{(i)}{{\left( \mathbf{{H}}_k^{(i)}\right) }^H}} \right\} = {{\varvec{\sigma }}}_{\mathbf{{H}}_k^{(i - 1)}}^2 - {{\varvec{\sigma }}}_{{\mathbf {h}}_{k,{\beta _i}}^{}}^2 \end{aligned}$$
(44)

where the covariance is initiated as \({{\varvec{\sigma }}}_{\mathbf{{H}}_k^{(1)}}^2 = {{\varvec{\sigma }}}_{{\mathbf{{H}}_k}}^2\) and taken off \({{\varvec{\sigma }}}_{{\mathbf {h}}_{k,{\beta _i}}^{}}^2={\text{E}}\left\{ {{\mathbf {h}}_{k,{\beta _i}}^{}{\mathbf {h}}_{k,{\beta _i}}^H} \right\} \) in each detection order step along with the order \(i\) increasing

$$\begin{aligned} {{\varvec{\sigma }}}_{{\mathbf{{H}}_k}}^2&= {} {\text{E}}\left\{ {{\mathbf{{H}}_k}{{\left( {{\mathbf{{H}}_k}} \right) }^H}} \right\} = \sum \limits _{{n_t} = 1}^{{N_T}} {\text{{diag}}\left\{ {{{\varvec{\sigma }}}_{\mathbf{{H}}_k^{(1,{n_t})}}^2, \ldots ,{{\varvec{\sigma }}}_{\mathbf{{H}}_k^{({N_R},{n_t})}}^2} \right\} } \nonumber \\ {{\varvec{\sigma }}}_{{\mathbf {h}}_{k,{\beta _i}}^{}}^2&= {} {\text{ E}}\left\{ {{\mathbf {h}}_{k,{\beta _i}}^{}{\mathbf {h}}_{k,{\beta _i}}^H} \right\} = \sum \limits _{{n_t} = 1}^{{N_T}} {\text{{diag}}\left\{ {{{\varvec{\sigma }}}_{{\mathbf {h}}_{k,{\beta _i}}^{(1,{n_t})}}^2, \ldots ,{{\varvec{\sigma }}}_{{\mathbf {h}}_{k,{\beta _i}}^{({N_R},{n_t})}}^2} \right\} } \end{aligned}$$
(45)

The \((n,n'){\text {th}}\) entry of \({{\varvec{\sigma }}}_{\mathbf{{H}}_k^{({n_r},{n_t})}}^2\) and \({{\varvec{\sigma }}}_{{\mathbf {h}}_{k,{\beta _i}}^{({n_r},{n_t})}}^2\) are given by \(\sum \limits _{m = 1}^{{N_C}} {{\text{E}}\left\{ {h_{k,n,m}^{({n_r},{n_t})}{{(h_{k,n',m}^{({n_r},{n_t})})}^*}} \right\} } \) and \({\text{E}}\left\{ {h_{k,n,{m^*}}^{({n_r},{n_t})}{{(h_{k,n',{m^*}}^{({n_r},{n_t})})}^*}} \right\} \) when \({m^*} = {\beta _i}{\text{{ mod}}}_{}^{}{N_C}\), respectively, where \(h_{k,n,n'}^{({n_r},{n_t})} = {[\mathbf{{H}}_k^{({n_r},{n_t})}]_{n,n'}}\). The expectation of the unit is given by

$$\begin{aligned}&{\text{{E}}}\left\{ {h_{k,n,m}^{({n_r},{n_t})}{{\left( h_{k,n',m'}^{({n_r},{n_t})}\right) }^*}} \right\} \nonumber \\&\quad = {\text{{E}}}\left\{ {\frac{1}{{N_C^2}}\sum \limits _{l = 1}^{L} {\left( \begin{array}{l} {e^{ - j2\pi \frac{{m - m'}}{N_C}(l-1)}}\\ \sum \limits _{n''' = 1}^{{N_C}} {\sum \limits _{n'' = 1}^{{N_C}} {\alpha _{l,k,n'''}^{({n_r},{n_t})}{{\left( \alpha _{l,k,n''}^{({n_r},{n_t})}\right) }^*}{e^{j2\pi \left( \frac{{m - n}}{{{N_C}}}(n'''-1) - \frac{{m' - n'}}{{{N_C}}}(n''-1)\right) }}} } \end{array} \right) } } \right\} \end{aligned}$$
(46)

with \(\alpha _{l,k,n'''}^{({n_r},{n_t})}{\left(\alpha _{l,k,n''}^{({n_r},{n_t})}\right)^*} = \left[\mathbf{{R}}_{\mathbf{{\alpha }}_{l,n}^{}}^{(0)}\right]_{n'',n'''}^{}\) given in (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Ye, S., Si, P. et al. Iterative Channel Estimation and Detection for High-Mobility MIMO-OFDM Systems: Mitigating Error Propagation by Exploiting Error Information. Wireless Pers Commun 84, 1907–1931 (2015). https://doi.org/10.1007/s11277-015-2641-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2641-6

Keywords

Navigation