Skip to main content
Log in

A Variable Diagonal Loading Beamformer with Joint Uncertainties of Steering Vector and Covariance Matrix

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel robust adaptive beamforming is proposed in which both the uncertainties of steering vector and covariance matrix are taken into account. First we develop a min–max optimization problem which aims to find a steering vector with the maximum output power under the worst-case covariance mismatch. Then we relax this min–max optimization problem to a max–min optimization problem which can be solved by using the Karush–Kuhn–Tucker optimality conditions. It is also shown that the proposed technique can be interpreted in terms of variable diagonal loading where the optimal loading factors are related to both the correlations (between the eigenvectors and the signal of interest) and the eigenvalues of the data covariance matrix. The effectiveness of the proposed approach is supported by computer simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gu, Y., & Leshem, A. (2012). Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Transactions on Signal Processing, 60(7), 3881–3885.

    Article  MathSciNet  Google Scholar 

  2. Li, J., & Stoica, P. (2005). Robust adaptive beamforming. New York: Wiley.

    Book  Google Scholar 

  3. Vorobyov, S. A. (2013). Principles of minimum variance robust adaptive beamforming design. Signal Processing, 93(12), 3264–3277.

    Article  Google Scholar 

  4. Khabbazibasmenj, A., & Vorobyov, S. A. (2012). Robust adaptive beamforming based on steering vector estimation with as little as possible prior information. IEEE Transactions on Signal Processing, 60(6), 2974–2987.

    Article  MathSciNet  Google Scholar 

  5. Landau, L., de Lamare, R. C., & Haardt, M. (2012). Robust adaptive beamforming algorithms based on the constrained constant modulus criterion. http://arxiv.org/abs/1310.0101.

  6. Vorobyov, S. A., Gershman, A. B., & Luo, Z.-Q. (2003). Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. IEEE Transactions on Signal Processing, 51(2), 313–324.

    Article  Google Scholar 

  7. Lorenz, R. G., & Boyd, S. P. (2005). Robust minimum variance beamforming. IEEE Transactions on Signal Processing, 53(5), 1684–1696.

    Article  MathSciNet  Google Scholar 

  8. Chen, C.-Y., & Vaidyanathan, P. P. (2007). Quadratically constrained beamforming robust against direction-of-arrival mismatch. IEEE Transactions on Signal Processing, 55(8), 4139–4150.

    Article  MathSciNet  Google Scholar 

  9. Cox, H., Zeskind, R., & Owen, M. (1987). Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(10), 1365–1376.

    Article  Google Scholar 

  10. Yu, Z.-L., Ser, W., Er, M.-H., Gu, Z., & Li, Y. (2009). Robust adaptive beamformers based on worst-case optimization and constraints on magnitude response. IEEE Transactions on Signal Processing, 57(7), 2615–2628.

    Article  MathSciNet  Google Scholar 

  11. Kim, S.-J., Magnani, A., Mutapcic, A., Boyd, S. P., & Luo, Z.-Q. (2008). Robust beamforming via worst-case SINR maximization. IEEE Transactions on Signal Processing, 56(4), 1539–1547.

    Article  MathSciNet  Google Scholar 

  12. Lie, J.-P., Ser, W., & See, C.-M. S. (2011). Adaptive uncertainty based iterative robust capon beamformer using steering vector mismatch estimation. IEEE Transactions on Signal Processing, 59(9), 4483–4488.

    Article  MathSciNet  Google Scholar 

  13. Jin, W., Jia, W., Zhang, F., & Yao, M. (2014). A user parameter-free robust adaptive beamformer based on general linear combination in Tandem with steering vector estimation. Wireless Personal Communications, 75, 1447–1462.

    Article  Google Scholar 

  14. Zhuang, J., & Huang, P. (2012). Robust adaptive array beamforming with subspace steering vector uncertainties. IEEE Signal Processing Letters, 19(12), 785–788.

    Article  Google Scholar 

  15. Zhang, W., Wang, J., & Wu, S. (2013). Robust Capon beamforming against large DOA mismatch. Signal Processing, 93(4), 804–810.

    Article  MathSciNet  Google Scholar 

  16. Zhuang, J., & Manikas, A. (2013). Interference cancellation beamforming robust to pointing errors. IET Signal Processing, 7(2), 120–127.

    Article  MathSciNet  Google Scholar 

  17. Li, J., Stoica, P., & Wang, Z. S. (2003). On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing, 51(7), 1702–1715.

    Article  Google Scholar 

  18. Gu, Y. J., Zhu, W. P., & Swamy, M. N. S. (2010). Adaptive beamforming with joint robustness against covariance matrix uncertainty and signal steering vector mismatch. Electronics Letters, 46(1), 86–88.

    Article  Google Scholar 

  19. Feldman, D. D., & Griffiths, L. J. (1994). A projection approach to robust adaptive beamforming. IEEE Transactions on Signal Processing, 42(4), 867–876.

    Article  Google Scholar 

  20. Shahbazpanahi, S., Gershman, A. B., Luo, Z.-Q., & Wong, K. M. (2003). Robust adaptive beamforming for general-rank signal models. IEEE Transactions on Signal Processing, 51(9), 2257–2269.

    Article  Google Scholar 

  21. Vorobyov, S. A., Gershman, A. B., Luo, Z.-Q., & Ma, N. (2004). Adaptive beamforming with joint robustness against mismatched signal steering vector and interference nonstationarity. IEEE Signal Processing Letters, 11(2), 108–111.

    Article  Google Scholar 

  22. M. Grant, S. Boyd. (2013) CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx.

  23. Song, X., Wang, J., & Wang, B. (2010). Robust adaptive beamforming under quadratic constraint with recursive method implementation. Wireless Personal Communications, 53, 555–568.

    Article  Google Scholar 

  24. Du, L., Li, J., & Stoica, P. (2010). Fully automatic computation of DIagonal loading levels for robust adaptive beamforming. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 449–458.

    Article  Google Scholar 

  25. Hassanien, A., Vorobyov, S. A., & Wong, K. M. (2008). Robust adaptive beamforming using sequential quadratic programming: An iterative solution to the mismatch problem. IEEE Signal Processing Letters, 15(11), 773–736.

    Google Scholar 

  26. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  27. Abdel-Samad, A., Davidson, T. N., & Gershman, A. B. (2006). Robust transmit eigen beamforming based on imperfect channel state information. IEEE Transactions on Signal Processing, 54(5), 1596–1609.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the open research fund of Chongqing Key Laboratory of Emergency Communications under Grant No. CQKLEC20130504, the Fundamental Research Funds for the Central Universities under Grant No. ZYGX2014J007, the Scientific Research Foundation for the Returned Overseas Chinese Scholars (SRF for ROCS, SEM) under Grant No. LXHG-47-ZJ, the National Natural Science Foundation of China under Grant No. 61301272, the Program for New Century Excellent Talents in University under Grant No. NCET-11-0873, the Program for Innovative Research Team in University of Chongqing under Grant No. KJTD201343, the Key Project of Chongqing Natural Science Foundation under Grant No. CSTC2011BA2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhuang.

Appendix: Proof of (24)

Appendix: Proof of (24)

Let us start with the equation

$$\begin{aligned} \underset{j=1}{\overset{N}{\sum }}\frac{z_j^{2}}{\left[ 1+{\uplambda }\left( \widehat{\gamma _j}+\beta _j\right) \right] ^{2}}=\epsilon _1. \end{aligned}$$
(31)

Differentiating with respect to \(\beta _i\), we have

$$\begin{aligned} \underset{j=1}{\overset{N}{\sum }} \frac{-2z_j^2\left[ \left( \widehat{\gamma }_j+\beta _j\right) \frac{\partial {\uplambda }}{\partial \beta _i}+{\uplambda }\delta (i-j)\right] }{\left[ 1+{\uplambda }\left( \widehat{\gamma }_j+\beta _j\right) \right] ^3}=0 \end{aligned}$$
(32)

where \(\delta (i)\) is the impulse function. Therefore,

$$\begin{aligned} \frac{\partial {\uplambda }}{\partial \beta _i}=- \frac{\frac{{\uplambda }z_i^2}{\left[ 1+{\uplambda }\left( {\widehat{\gamma}}_i+\beta _i\right) \right] ^3}}{\sum \nolimits _{j=1}^{N} \frac{z_j^2\left( {\widehat{\gamma}}_j+\beta _j\right) }{\left[ 1+{\uplambda }\left( {\widehat{\gamma}}_j+\beta _j\right) \right] ^3}} \end{aligned}$$
(33)

Using (22) and differentiating it with respect to \(\beta _i\), we have

$$\begin{aligned} -\frac{\partial f}{\partial \beta _i}= & {} \underset{j=1}{\overset{N}{\sum }} \frac{z_j^2 \delta (i-j)}{\left( \widehat{\gamma }_j+\beta _j+\frac{1}{{\uplambda }}\right) ^2}\nonumber \\&+ \underset{j=1}{\overset{N}{\sum }} \frac{-2z_j^2\left( \widehat{\gamma }_j+\beta _j\right) \left[ \delta (i-j)-\frac{1}{{\uplambda }^2}\frac{\partial {\uplambda }}{\partial \beta _i}\right] }{\left( \widehat{\gamma }_j+\beta _j+\frac{1}{{\uplambda }}\right) ^3}\nonumber \\= & {} \frac{z_i^2\left[ {\uplambda }^2-{\uplambda }^3(\widehat{\gamma }_i+\beta _i)\right] }{\left[ 1+{\uplambda }(\widehat{\gamma }_j+\beta _j)\right] ^3} +2{\uplambda }\frac{\partial {\uplambda }}{\partial \beta _i}\underset{j=1}{\overset{N}{\sum }} \frac{z_j^2\left( \widehat{\gamma }_j+\beta _j\right) }{\left[ 1+{\uplambda }(\widehat{\gamma }_j+\beta _j)\right] ^3} \end{aligned}$$
(34)

Substituting \(\frac{\partial {\uplambda }}{\partial \beta _i}\) from (33), we have

$$\begin{aligned} -\frac{\partial f}{\partial \beta _i}= & {} \frac{z_i^2\left[ {\uplambda }^2-{\uplambda }^3\left( \widehat{\gamma }_i+\beta _i\right) \right] }{\left[ 1+{\uplambda }\left( \widehat{\gamma }_i+\beta _i\right) \right] ^3} +\frac{-2{\uplambda }^2 z_i^2}{\left[ 1+{\uplambda }\left( \widehat{\gamma }_i+\beta _i\right) \right] ^3}\nonumber \\= & {} -\frac{{\uplambda }^2 z_i^2}{\left[ 1+{\uplambda }\left( \widehat{\gamma }_i+\beta _i\right) \right] ^2} \end{aligned}$$
(35)

which is equivalent to (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, J., Zhang, T., Chen, J. et al. A Variable Diagonal Loading Beamformer with Joint Uncertainties of Steering Vector and Covariance Matrix. Wireless Pers Commun 84, 999–1015 (2015). https://doi.org/10.1007/s11277-015-2672-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2672-z

Keywords

Navigation