Skip to main content
Log in

Low Cost Real Time Location System Based in Radio Frequency Identification for the Provision of Social and Safety Services

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The complexity of deployment and high implementation costs impede proliferation of real time location systems, depriving society of the benefits in terms of safety that these systems are capable of providing. The people tracking system presented in this article prioritizes ease of installation and adaptability to new low cost devices in emerging market against location accuracy to suit large scenarios that lack own infrastructure. The system has been implemented in a large playground to provide to the guardians of monitored children information about location and alert when an output of the controlled area is detected. Wireless channel characterization has been performed by means of deterministic 3D ray launching technique in order to assess the radioplanning process in the implemented network. This article describes the system and how it has been deployed in the validation scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boulos, M. N. K., & Berry, G. (2012). Real-time locating systems (rtls) in healthcare: A condensed primer. International journal of health geographics, 11(1), 25.

    Article  Google Scholar 

  2. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(6), 1067–1080.

    Article  Google Scholar 

  3. Morrison, A., Renaudin, V., Bancroft, J. B., & Lachapelle, G. (2012). Design and testing of a multi-sensor pedestrian location and navigation platform. Sensors, 12(3), 3720–3738.

    Article  Google Scholar 

  4. Rodas, J., Barral, V., & Escudero, C. J. (2013). Architecture for multi-technology real-time location systems. Sensors, 13(2), 2220–2253.

    Article  Google Scholar 

  5. De Gante, A., & Siller, M. (2013). A survey of hybrid schemes for location estimation in wireless sensor networks. Procedia Technology, 7, 377–383.

    Article  Google Scholar 

  6. Jeong, S. Y., Jo, H. G., & Kang, S. J. (2014). Fully distributed monitoring architecture supporting multiple trackees and trackers in indoor mobile asset management application. Sensors, 14(3), 5702–5724.

    Article  Google Scholar 

  7. Geng, L., Bugallo, M., Athalye, A., & Djuric, P. (2014). Indoor tracking with rfid systems. IEEE Journal of Selected Topics in Signal Processing, 8(1), 96–105.

    Article  Google Scholar 

  8. Tran, T., Sutton, C., Cocci, R., Nie, Y., Diao, Y., & Shenoy, P. (2009). Probabilistic inference over rfid streams in mobile environments. In IEEE 25th International Conference on Data Engineering, 2009. ICDE’09 (pp. 1096–1107). IEEE.

  9. Yu, J., Ku, W.-S., Sun, M.-T., & Lu, H. (2013). An rfid and particle filter-based indoor spatial query evaluation system. In Proceedings of the 16th International Conference on Extending Database Technology (pp. 263–274). ACM.

  10. Yang, P., Wu, W., Moniri, M., & Chibelushi, C. C. (2013). Efficient object localization using sparsely distributed passive rfid tags. IEEE Transactions on Industrial Electronics, 60(12), 5914–5924.

    Article  Google Scholar 

  11. Azzouzi, S., Cremer, M., Dettmar, U., Kronberger, R., & Knie, T. (2011). New measurement results for the localization of uhf rfid transponders using an angle of arrival (aoa) approach. In 2011 IEEE International Conference on RFID (RFID) (pp. 91–97). IEEE.

  12. Li, Z., Zhou, Z., He, C., & Huang, X. (2012). Advances in rfid-ila: The past, present and future of rfid-based indoor location algorithms. In 2012 24th Chinese Control and Decision Conference (CCDC) (pp. 3830–3835).

  13. Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. Communications Surveys and Tutorials, IEEE, 11(1), 13–32.

    Article  Google Scholar 

  14. Azpilicueta, L., Falcone, F., Astráin, J. J., Villadangos, J., Zuazola, I. J. G., Landaluce, H., et al. (2012). Measurement and modeling of a UHF-RFID system in a metallic closed vehicle. Microwave and Optical Technology Letters, 54(9), 2123–2130.

    Article  Google Scholar 

  15. Nazabal, J. A., Iturri, P. L., Azpilicueta, L., Falcone, F., & Fernández-Valdivielso, C. (2012). Performance analysis of ieee 802.15. 4 compliant wireless devices for heterogeneous indoor home automation environments. International Journal of Antennas and Propagation, 2012. doi:10.1155/2012/176383.

  16. Aguirre, E., Arpon, J., Azpilicueta, L., De Miguel Bilbao, S., Ramos, V., & Falcone, F. J. (2012). Evaluation of electromagnetic dosimetry of wireless systems in complex indoor scenarios with human body interaction. Progress in Electromagnetics Research B, 43, 189–209.

    Article  Google Scholar 

  17. Mirabi, M., & Javadi, S. (2012). People tracking in outdoor environment using kalman filter. In 2012 Third International Conference on Intelligent Systems, Modelling and Simulation (ISMS) (pp. 303–307).

  18. Motai, Y., Jha, S. K., & Kruse, D. (2012). Human tracking from a mobile agent: Optical flow and Kalman filter arbitration. Signal Processing: Image Communication, 27(1), 83–95.

    Google Scholar 

  19. Astrain, J. J., de Mendívil, J. R. G., & Garitagoitia, J. R. (2006). Fuzzy automata with epsilon-moves compute fuzzy measures between strings. Fuzzy Sets and Systems, 157(11), 1550–1559.

    Article  MATH  MathSciNet  Google Scholar 

  20. Astráin, J. J., Villadangos, J. E., Garitagoitia, J. R., de Mendívil, J. R. G., & Cholvi, V. (2006). Fuzzy location and tracking on wireless networks. In: Zomaya, A. Y., & Bononi, L. (Eds.), MOBIWAC (pp. 84–91). New York, NY: ACM.

  21. Alvarez-Alvarez, A., Alonso, J. M., & Trivino, G. (2013). Human activity recognition in indoor environments by means of fusing information extracted from intensity of wifi signal and accelerations. Information Sciences, 233, 162–182.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Spanish Government under “Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad” funding program (iLogisTICs project, TEC2013-45585-C2-2-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Bahillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angulo, I., Onieva, E., Perallos, A. et al. Low Cost Real Time Location System Based in Radio Frequency Identification for the Provision of Social and Safety Services. Wireless Pers Commun 84, 2797–2814 (2015). https://doi.org/10.1007/s11277-015-2767-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2767-6

Keywords

Navigation