Skip to main content
Log in

Performance Analysis of Amplify-and-Forward Cooperative Networks with Best-Relay Selection Over Weibull Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We analyze and study the performance of amplify-and-forward cooperative diversity communication network with best-relay selection over Weibull fading channel. In this paper, a closed-form expression for the moment generating function (MGF) of the total signal-to-noise ratio at the destination is derived in terms of the tabulated Meijer’s G-function. By the help of this derived MGF expression, we analyze the average symbol error rate (ASER) and outage probability over independent and identical distributed Weibull fading channels for multiple relays. The numerical values of ASER and outage probability expressions are compared with Monte-Carlo simulation result to verify the accuracy of the derivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  2. Laneman, J. N., & Wornell, G. W. (2000). Energy-efficient antenna sharing and relaying for wireless networks. In Wireless Communications and Networking Confernce, 2000. WCNC. 2000 IEEE vol. 1 (pp. 7–12). IEEE.

  3. Laneman, J. N., & Wornell, G. W. (2002). Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. In Global Telecommunications Conference, 2002. GLOBECOM’02. IEEE vol. 1 (pp. 77–81). IEEE.

  4. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  5. Peng, L.-C., & Lay, K.-T. (2013). Cooperative diversity by censorial relays for communications over Rayleigh fading channels. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE (pp. 3530–3534). IEEE.

  6. Zhu, H., Farhang-Boroujeny, B., & Schlegel, C. (2003). Pilot embedding for joint channel estimation and data detection in MIMO communication systems. IEEE Communications Letters, 7(1), 30–32.

    Article  Google Scholar 

  7. Hasna, M. O., & Alouini, M.-S. (2003). End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.

    Article  Google Scholar 

  8. Tsiftsis, T., Karagiannidis, G., Kotsopoulos, S., & Pavlidou, F.-N. (2004). BER analysis of collaborative dual-hop wireless transmissions. Electronics Letters, 40(11), 679–681.

    Article  Google Scholar 

  9. Anghel, P. A., & Kaveh, M. (2004). Exact symbol error probability of a cooperative network in a Rayleigh fading environment. IEEE Transactions on Wireless Communications, 3(5), 1416–1421.

    Article  Google Scholar 

  10. Ikki, S., & Ahmed, M. H. (2007). Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel. IEEE Communications Letters, 11(4), 334–336.

    Article  Google Scholar 

  11. Kong, N. (2009). Performance comparison among conventional selection combining, optimum selection combining and maximal ratio combining. In IEEE International Conference on Communications, 2009. ICC’09 (pp. 1–6). IEEE.

  12. Ikki, S. S., & Ahmed, M. H. (2009). Exact error probability and channel capacity of the best-relay cooperative-diversity networks. IEEE Signal Processing Letters, 16(12), 1051–1054.

    Article  Google Scholar 

  13. Lei, Y., Cheng, W., & Zeng, Z. (2009). Performance analysis of selection combining for amplify-and-forward cooperative diversity networks over Weibull fading channels. In IEEE International Conference on Communications Technology and Applications, 2009. ICCTA’09 (pp. 648–651). IEEE.

  14. Ho, S. W. (2004). Adaptive modulation (QPSK QAM), the wireless networking group, Intel in communication. California: Intel corporation.

  15. Kader, M. A., Ghani, F., & Badlishah R. (2011). Development and performance evaluation of hierarchical quadrature amplitude modulation (HQAM) for image transmission over wireless channels. In 2011 Third International Conference on Computational Intelligence, Modelling and Simulation (CIMSiM) (pp. 227–232). IEEE.

  16. Hashemi, H. (1993). The indoor radio propagation channel. Proceedings of the IEEE, 81(7), 943–968.

    Article  Google Scholar 

  17. Taneda, M., Takada, J., & Araki, K. (1999). A new approach to fading: Weibull model. In Proceedings of IEEE International Symposium on Personal, Indoor, Mobile Radio Communications (pp. 711–715).

  18. Lei, Y., Zeng, Z., & Cheng W. (2010). Performance analysis of selection combining in decode-and-forward cooperative diversity networks over Weibull fading channel. In 2010 Second International Conference on Networks Security Wireless Communications and Trusted Computing (NSWCTC) vol. 1 (pp. 87–90). IEEE.

  19. Sagias, N. C., Karagiannidis, G. K., Zogas, D. A., Mathiopoulos, P. T., & Tombras, G. S. (2004). Performance analysis of dual selection diversity in correlated Weibull fading channels. IEEE Transactions on Communications, 52(7), 1063–1067.

    Article  Google Scholar 

  20. Alouini, M.-S., & Simon, M. K. (2001). Performance of generalized selection combining over Weibull fading channels. In Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th vol. 3 (pp. 1735–1739). IEEE.

  21. Stefanović, M. Č., Milović, D. M., Mitić, A. M., & Jakovljević, M. M. (2008). Performance analysis of system with selection combining over correlated Weibull fading channels in the presence of cochannel interference. AEU-International Journal of Electronics and Communications, 62(9), 695–700.

    Article  Google Scholar 

  22. Sagias, N., Zogas, D., Karagiannidis, G., & Tombras, G. (2003). Performance analysis of switched diversity receivers in Weibull fading. Electronics Letters, 39(20), 1472–1474.

    Article  Google Scholar 

  23. Ikki, S. S., & Ahmed, M. H. (2009). Performance analysis of dual hop relaying over non-identical Weibull fading channels. In IEEE 69th Vehicular Technology Conference, 2009. VTC Spring 2009 (pp. 1–5). IEEE.

  24. Bithas, P. S., Karagiannidis, G. K., Sagias, N. C., Mathiopoulos, P. T., Kotsopoulos, S. A., & Corazza, G. E. (2005). Performance analysis of a class of GSC receivers over nonidentical Weibull fading channels. IEEE Transactions on Vehicular Technology, 54(6), 1963–1970.

    Article  Google Scholar 

  25. Sagias, N. C., Zogas, D. A., & Karagiannidis, G. K. (2005). Selection diversity receivers over nonidentical Weibull fading channels. IEEE Transactions on Vehicular Technology, 54(6), 2146–2151.

    Article  Google Scholar 

  26. Ikki, S. S., & Aïssa, S. (2012). Performance analysis of amplify-and-forward relaying over Weibull fading channels with multiple antennas. IET Communications, 6(2), 165–171.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kanjirathumkal, C. K., Sameer, S., & Jacob L. (2013). On the computation of exact moments and performance metrics for multihop transparent Weibull relay channels. In 2013 National Conference on Communications (NCC) (pp. 1–5). IEEE.

  28. Kapucu, N., Bilim, M., & Develi, I. (2014). A closed-form MGF expression of instantaneous SNR for Weibull fading channels. Wireless Personal Communications, 77(2), 1605–1613.

  29. Gaber, A. H., Ismail, M. H., & Mourad, H.-A. M. (2013). Outage probability analysis of cooperative diversity networks over Weibull and Weibull-lognormal channels. Wireless Personal Communications, 70(2), 695–708.

    Article  Google Scholar 

  30. Torabi, M., Ajib, W., & Haccoun, D. (2009). Performance analysis of amplify-and-forward cooperative networks with relay selection over Rayleigh fading channels. In IEEE 69th Vehicular Technology Conference, 2009. VTC Spring 2009 (pp. 1–5). IEEE.

  31. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.

  32. Constantine, A., & Robinson, N. (1997). The Weibull renewal function for moderate to large arguments. Computational Statistics and Data Analysis, 24(1), 9–27.

    Article  MathSciNet  MATH  Google Scholar 

  33. Cheng, J., Tellambura, C., & Beaulieu, N. C. (2004). Performance of digital linear modulations on Weibull slow-fading channels. IEEE Transactions on Communications, 52(8), 1265–1268.

    Article  Google Scholar 

  34. Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series and products (7th ed.). SanDiego: Academic Press.

  35. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). New York: Tata McGraw-Hill Education.

  36. Abate, J., & Whitt, W. (1995). Numerical inversion of Laplace transforms of probability distributions. ORSA Journal on computing, 7(1), 36–43.

    Article  MATH  Google Scholar 

  37. Ko, Y.-C., Alouini, M.-S., & Simon, M. K. (2000). Outage probability of diversity systems over generalized fading channels. IEEE Transactions on Communications, 48(11), 1783–1787.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank IIT Indore for all the suppport and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Bhatia, V. Performance Analysis of Amplify-and-Forward Cooperative Networks with Best-Relay Selection Over Weibull Fading Channels. Wireless Pers Commun 85, 641–653 (2015). https://doi.org/10.1007/s11277-015-2799-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2799-y

Keywords

Navigation