Skip to main content
Log in

On the Analysis of MIMO-ZF Receiver Over Fully Correlated MIMO Rayleigh Fading with LMMSE Channel Estimation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

For multiple-input multiple-output (MIMO) communication systems, the zero-forcing (ZF) receiver has attracted great research interest in recent years. The purpose of this work is to analyze the effect of channel estimation error on the performance of the MIMO-ZF receiver over spatially correlated Rayleigh fading channels. Unlike previous works, where the channel is assumed with transmit correlation but without receiver correlation, we treat the fully correlated channel cases. Furthermore, we assume that the channel estimation error is a Gaussian and correlated matrix. The distribution of the post-processing signal-to-noise ratios is approximated. An approximation of the average bit error rate (BER) is derived and compared to Monte Carlo simulation results. The proposed BER expression takes into consideration that the post-processing noise in not Gaussian. Numerical results show an excellent agreement between the analytical approximation and Monte Carlo simulation curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that \({\varvec{R}}_{ {{\varvec{H}}}, {{\varvec{H}}}}={\mathbb{E}}[ {\varvec{H}} {\varvec{H}}^H ] \) denotes the covariance of the channel matrix and does not correspond to the conventional definition of covariance \({\mathbb{E}}[ {\text{vec}} ( {\varvec{H}}) {\text{vec}} ( {\varvec{H}} )^H] \).

  2. Since \(({\varvec{A}}\otimes {\varvec{B}})^H={\varvec{A}}^H \otimes {\varvec{B}}^H\).

References

  1. Winters, J. H., Salz, J., & Gitlin, R. D. (1994). The impact of antenna diversity on the capacity of wireless communication systems. IEEE Transactions on Communications, 42(234), 1740–1751.

    Article  Google Scholar 

  2. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  3. Bjerke, B. A., & Proakis, J. G. (1999). Multiple-antenna diversity techniques for transmission over fading channels. In Proceedings of IEEE wireless communications and networking conference (pp. 1038–1042).

  4. Foschini, G. J. (1996). Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1, 41–59.

    Article  Google Scholar 

  5. Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In Proceedings of international symposium on signals, systems, and electronics (pp. 295–300).

  6. Nobandegani, K. S., & Azmi, P. (2010). A study of the extreme effects of fading correlation and the impact of imperfect MMSE channel estimation on the performance of SIMO zero-forcing receivers and on the capacity-maximizing strategy in SIMO links. IEEE Transactions on Vehicular Technology, 59(3), 1294–1306.

    Article  Google Scholar 

  7. Nobandegani, K. S., & Azmi, P. (2010). Effects of inaccurate training-based minimum mean square error channel estimation on the performance of multiple input-multiple output Vertical Bell Laboratories space–time zero-forcing receivers. IET Communications, 4(6), 663–674.

    Article  MathSciNet  MATH  Google Scholar 

  8. Siriteanu, C., Miyanaga, Y., Blostein, S. D., Kuriki, S., & Shi, X. (2012). MIMO zero-forcing detection analysis for correlated and estimated rician fading. IEEE Transactions on Vehicular Technology, 61(7), 3087–3099.

    Article  Google Scholar 

  9. Wang, C., Au, E. K. S., Murch, R. D., Mow, W. H., Cheng, R. S., & Lau, V. (2007). On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error. IEEE Transactions on Wireless Communications, 6(3), 805–810.

    Article  Google Scholar 

  10. Cavers, J. (1991). An analysis of pilot symbol assisted modulation for rayleigh fading channels. IEEE Transactions on Vehicular Technology, 40(4), 686–696.

    Article  Google Scholar 

  11. Ding, M., & Blostein, S. D. (2010). Maximum mutual information design for MIMO systems with imperfect channel knowledge. IEEE Transactions on Information Theory, 56(10), 4793–4801.

    Article  MathSciNet  Google Scholar 

  12. Garg, P., Mallik, R. K., & Gupta, H. M. (2005). Performance analysis of space–time coding with imperfect channel estimation. IEEE Transactions on Wireless Communications, 4(1), 257–265.

    Article  Google Scholar 

  13. Ho, P. K. M., Yar, K. P., & Kam, P. Y. (2009). Cutoff rate of MIMO systems in rayleigh fading channels with imperfect CSIR and finite frame error probability. EEE Transactions on Vehicular Technology, 58(7), 3292–3300.

    Article  Google Scholar 

  14. Medard, M. (2000). The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE Transactions on Information Theory, 46(3), 933–946.

    Article  MATH  Google Scholar 

  15. Musavian, L., Nakhai, M. R., Dohler, M., & Aghvami, A. H. (2007). Effect of channel uncertainty on the mutual information of MIMO fading channels. EEE Transactions on Vehicular Technology, 56(5), 2798–2806.

    Article  Google Scholar 

  16. Gore, D. A., Heath, R. W. J., & Paulraj, A. J. (2002). Transmit selection in spatial multiplexing systems. IEEE Communications Letters, 6(11), 491–493.

    Article  Google Scholar 

  17. Li, X., & Nie, Z. (2004). Performance losses in V-BLAST due to correlation. IEEE Antennas Wireless Propagation Letters, 3, 291–294.

    Article  Google Scholar 

  18. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10, 585–595.

    Article  Google Scholar 

  19. Shiu, D. S., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.

    Article  Google Scholar 

  20. Kang, M., & Alouini, M. S. (2006). Capacity of correlated MIMO Rayleigh channels. IEEE Transactions on Wireless Communications, 5, 143–155.

    Article  Google Scholar 

  21. Loyka, S. L. (2001). Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communication Letters, 5(9), 369–371.

    Article  Google Scholar 

  22. Chiani, M., Win, M. Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Transactions on Information Theory, 49(10), 2363–2371.

    Article  MathSciNet  MATH  Google Scholar 

  23. McKay, M. R., & Collings, I. B. (2007). Error performance of MIMO-BICM with zero-forcing receivers in spatially-correlated Rayleigh channels. IEEE Transactions on Wireless Communications, 6(3), 787–792.

    Article  Google Scholar 

  24. Thian, B. S., & Goldsmith, A. (2010). Decoding for MIMO systems with imperfect channel state information. In Proceedings of IEEE global telecommunication conference.

  25. Dangl, M. A., Sgraja, C., & Lindner, J. (2007). An improved block equalization scheme for uncertain channel estimation. IEEE Transactions on Wireless Communications, 6(1), 146–156.

    Article  Google Scholar 

  26. Kermoal, J. P., Schumacher, L., Pedersen, K. I., Mogensen, P. E., & Frederiksen, F. (2002). A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications, 20(6), 1211–1226.

    Article  Google Scholar 

  27. Taricco, G., & Biglieri, E. (2005). Space–time decoding with imperfect channel estimation. IEEE Transactions on Wireless Communications, 4(4), 1874–1888.

    Article  Google Scholar 

  28. Dall’Anese, E., Assalini, A., & Pupolin, S. (2009). On the effect of imperfect channel estimation upon the capacity of correlated MIMO fading channels. In Proceedings of IEEE vehicular technology conference.

  29. Xu, R., & Lau, F. C. M. (2006). Performance analysis for MIMO systems using zero forcing detector over fading channels. IEE Proceedings Communications, 153(1), 74–80.

    Article  Google Scholar 

  30. Saleh, H., & Hamouda, W. (2009). Performance of zero-forcing detectors over MIMO flat-correlated Ricean fading channels. IET Communications, 3(1), 10–16.

    Article  Google Scholar 

  31. Kiessling, M., & Speidel, J. (2003). Analytical performance of MIMO zero-forcing receivers in correlated Rayleigh fading environments. In Proceedings of 4th IEEE workshop signal processing advances in wireless communications SPAWC 2003 (pp. 383–387).

  32. Abadir, K. M., & Magnus, J. R. (2005). Matrix algebra (econometric exercises). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  33. Goldsmith, A. (2005). Wireless Communications. Cambridge: Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lassaad Ammari.

Appendix: Proof of the First Inequality in (32)

Appendix: Proof of the First Inequality in (32)

The conditioned covariance of the virtual noise is given by (31)

$$\begin{aligned} {\mathbb{E}}[{\varvec{v}}_{x} {\varvec{v}}_{x}^H| \hat{\varvec{H}},{\varvec{x}}_i ] =({\varvec{x}}_i' \otimes {\varvec{H}}^{\dag } ) {\varvec{U}}_s{\varvec{D}}_s{\varvec{U}_s^H} ({\varvec{x}}_i^{*} \otimes {\varvec{H}}^{\dag H} ) \end{aligned} $$
(47)

Since \({\varvec{U}}_s\) is a unitary matrix, we have \(({\varvec{x}}_i' \otimes {\varvec{H}}^{\dag } ) {\varvec{U}}_s \sim ({\varvec{x}}_i' \otimes {\varvec{H}}^{\dag } )\). Thus, we can write

$$\begin{aligned} {\mathbb{E}}[{\varvec{v}}_{x} {\varvec{v}}_{x}^H| \hat{\varvec{H}},{\varvec{x}}_i ] \sim ({\varvec{x}}_i' \otimes {\varvec{H}}^{\dag } ) {\varvec{D}}_s ({\varvec{x}}_i^{*} \otimes {\varvec{H}}^{\dag H} ) \end{aligned}$$
(48)

We recall that \({\varvec{D}}_s \) is a diagonal matrix whose elements satisfy \(\left[ {\varvec{D}}_s \right] _{ii} \ge \lambda _{\text{min}}^s\). Hence, we have the first inequality of (32)

$$\begin{aligned} {\mathbb{E}}[{\varvec{v}}_{x} {\varvec{v}}_{x}^H| \hat{\varvec{H}},{\varvec{x}}_i ] \ge \lambda _{\text{min}}^s ({\varvec{x}}_i' \otimes {\varvec{H}}^{\dag } ) {\varvec{I}}_{N_t N_r} ({\varvec{x}}_i^{*} \otimes {\varvec{H}}^{\dag H} ) \end{aligned} $$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammari, M.L., Fortier, P. On the Analysis of MIMO-ZF Receiver Over Fully Correlated MIMO Rayleigh Fading with LMMSE Channel Estimation. Wireless Pers Commun 85, 1025–1042 (2015). https://doi.org/10.1007/s11277-015-2823-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2823-2

Keywords

Navigation