Skip to main content
Log in

A Content Sharing and Discovery Framework Based on Semantic and Geographic Partitioning for Vehicular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently P2P networks and theirs applications have become increasingly popular. On the other hand, considering ever increasing industrial and scholarly popularity of Vehicular Ad hoc Networks (VANETs), implementation P2P network over VANET has attracted attentions recently. One of the most important applications in P2P networks is content discovery. Regarding the difficulties of structured and unstructured protocols over VANET, this paper presents a new framework for sharing and content discovery which formed a structured overlay to overcome problems likes broadcasting storm which is the main problem of unstructured methods. On the other hand, this paper tries to solve the instability of structured overlay networks as the main problem of them, by applying geographical and semantic partitioning. Simulation results clarified higher performance of proposed framework in comparison to previous protocols. Furthermore, applying G-Network queue network, we have modeled the behavior of proposed framework and then, optimize it by gradient descent optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Toor, Y., Mühlethaler, P., Laouiti, A., & Fortelle, A. D. L. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Survey & Tutorials, 10(3), 74–88.

  2. Gerla, M., & Kleinrock, L. (2011). Vehicular networks and the future of the mobile internet. Journal of Computer Network, 55(2), 457–469.

    Article  Google Scholar 

  3. Yousefi, S., Fathy, M., & Mousavi, S. (2006). Vehicular ad hoc networks (VANETS) challenges and perspectives. In 6th IEEE international conference on ITS telecommunications proceeding.

  4. Passarella, Andrea. (2012). A survey on content-centric technologies for the current Internet: CDN and P2P solutions. Computer Communications, 35(1), 1–32.

    Article  Google Scholar 

  5. Rostami, H., & Habibi, J. (2007). Topology awareness of P2P overlay networks. Concurrency and Computation-Practice and Experience, 19(7), 999–1021.

    Article  Google Scholar 

  6. Mawji, Afzal, Hassanein, Hossam, & Zhang, Xiangyang. (2011). Peer-to-peer overlay topology control for mobile ad hoc networks. Pervasive and Mobile Computing, 7(4), 467–478.

    Article  Google Scholar 

  7. Babaei, H., Fathy, M., Berangi, R., & Romoozi, M. (2012). The impact of mobility models on the performance of P2P content discovery protocols over mobile ad hoc networks. Journal of Peer-to-Peer Networking and Applications,. doi:10.1007/s12083-012-0184-0.

    Google Scholar 

  8. Meshkova, E., Riihijärvi, J., Petrova, M., & Mähönen, P. (2008). A survey on resource discovery mechanisms, peer-to-peer and service discovery protocols. Computer Networks, 52(11), 2097–2128.

    Article  Google Scholar 

  9. Ciraci, S., Körpeogˇlu, I., & Ulusoy, Ö. (2009). Reducing query overhead through route learning in unstructured peer-to-peer network. Network and Computer Applications, 32(3), 550–567.

    Article  Google Scholar 

  10. Wisitpongphan, N., Tonguz, O. K., Parikh, J. S., Mudalige, P., Bai, F., & Sadekar, V. (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wireless Communications, 14(6), 84–94.

    Article  Google Scholar 

  11. Rybicki, Jedrzej, Scheuermann, Björn, & Mauve, Martin. (2011). Peer-to-peer data structures for cooperative traffic information systems. Pervasive and Mobile Computing, 8(2), 194–209.

    Article  Google Scholar 

  12. Rostami, Habib, Habibi, Jafar, & Livani, Emad. (2009). Semantic partitioning of peer-to-peer search space. Computer Communications, 32(4), 619–633.

    Article  Google Scholar 

  13. Gelenbe, E. (1991). Product-form queuing networks with negative and positive customers. Journal of Applied Probability, 28(3), 656–663.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fathy, M., Rahemifar, K. H., Babaei, H., & Romoozi, M., & Berangy, R. (2012). Impact of mobility on performance of P2P content discovery protocols over MANET. Elsevier, Procedia Computer Science, 10, 642–649.

  15. Stoica, L., Morris, R., Karger, D., Kaashoek, F., & Balakrishnan, H. (2001). A scalable peer-to-peer lookup service for internet applications. SIGCOMM.

  16. Liu, C. L., Wang, C. Y., & Wei, H. Y. (2010). Cross-layer mobile chord P2P protocol design for VANET. Journal of Ad Hoc Ubiquitous Computer, 6(3), 150–163.

    Article  MathSciNet  Google Scholar 

  17. Zhu, Y., & Hu, Y. (2007). Efficient semantic search on DHT overlays. Journal of Parallel Distribution Computer, 67(5), 604–616.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dutta, N. (2010). A peer to peer based information sharing scheme in vehicular ad hoc networks. In Proceedings of the 2010 eleventh international conference on mobile data management (MDM’10). IEEE Computer Society, pp. 309–310.

  19. Doulamis, N. D., Karamolegkos, P. N., Doulamis, A., & Nikolakopoulos, I. (2009). Exploiting semantic proximities for content search over p2p networks. Journal of Computer Communication, 32(5), 814–827.

    Article  Google Scholar 

  20. da Hora, D. N., Macedo, D. F., Oliveira, L. B., & Siqueira, I. G. (2009). Enhancing peer-to-peer content discovery techniques over mobile ad hoc networks. Journal of Computer Communication, 32, 1445–1459.

    Article  Google Scholar 

  21. Harbin, S., Meng, Q., & Aidong, M. (2007). P2P computing in design of VANET routing protocol. Wireless Communications, Networking and Mobile Computing, pp. 1502, 1507, 21–25.

  22. Das, S., Nandan, A., & Pau, G. (2004). SPAWN: a swarming protocol for vehicular ad-hoc wireless networks. Proceedings of the 1st ACM international workshop on vehicular ad hoc networks (VANET’04) (pp. 93–94). New York, NY: ACM.

    Chapter  Google Scholar 

  23. Thompson, N., & Crepaldi, R. (2010). Locus: A location-based data overlay for disruption-tolerant networks. In Proceedings of the 5th ACM workshop on challenged networks (CHANTS’10) (pp. 47–54). New York, NY: ACM.

  24. Abuelela, M., & Olariu, S. (2007). ZIPPER: A zero-infrastructure peer-to-peer system for VANET. Proceedings of the 3rd ACM workshop on wireless multimedia networking and performance modeling (WMuNeP’07) (pp. 2–8). New York, NY: ACM.

    Chapter  Google Scholar 

  25. Yang, B., & Mareboyana, M. (2012). Similarity search in sensor networks using semantic-based caching. Journal of Network Computer Application, 35(2), 577–583.

    Article  Google Scholar 

  26. Ghandeharizade, S., Kapadia, S., & Krishnamachari, B. (2004). PAVAN: A policy framework for content availability in vehicular ad-hoc networks. Proceedings of the 1st ACM international workshop on vehicular ad hoc networks (VANET’04) (pp. 57–65). New York, NY: ACM.

    Chapter  Google Scholar 

  27. Shim, Y.-S., Kim, Y.-S., & Lee, K.-H. (2009). A mobility-based clustering and discovery of web services in mobile ad hoc networks. In IEEE international conference on web services, 2009. ICWS 2009, pp. 374–380.

  28. Gruber, T. Ling, I. L., & Özsu, M. T. (2008). “Ontology”, Encyclopedia of Database Systems. Berlin: Springer.

  29. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199–220.

    Article  Google Scholar 

  30. Noy, N. F., & Mc Guinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. Technical Report KSL-01-05, Knowledge Systems Laboratory, Stanford University, Stanford, CA, 94305.

  31. Bowyer, A. (1981). Computing Dirichlet tessellations. The Computer Journal, 24(2), 162–166. doi:10.1093/comjnl/24.2.162.

    Article  MathSciNet  Google Scholar 

  32. Aurenhammer, F. (1991). Voronoi diagrams—A survey of a fundamental geometric data structure. ACM Computing Survey, 23(3), 345–405.

  33. Bilal, Sardar Muhammad, Bernardos, Carlos Jesus, & Guerrero, Carmen. (2013). Position-based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36(2), 685–697.

    Article  Google Scholar 

  34. Lee, Kevin C., Cheng, Pei-Chun, & Gerla, Mario. (2010). GeoCross: A geographic routing protocol in the presence of loops in urban scenarios. Ad Hoc Networks, 8(5), 474–488.

    Article  Google Scholar 

  35. James Bernsen, J., & Manivannan, D. (2009). Unicast routing protocols for vehicular ad hoc networks: A critical comparison and classification. Pervasive and Mobile Computing, 5(1), 1–18.

    Article  Google Scholar 

  36. Harri, J. (2009). Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Communications Surveys and Tutorials, 11(4), 19–41.

  37. Held, G. (2004). Focus on the Cisco Aironet 350 wireless access point. Journal of Network Manager, 14(1), 3–7.

    Google Scholar 

  38. Gelenbe, E. (1989). Random neural networks with negative and positive signals and product form solution. Neural Computation, 1(4), 502–510. doi:10.1162/neco.1989.1.4.502.

    Article  Google Scholar 

  39. Fourneau, J. M., Gelenbe, E., & Suros, R. (1996). G-networks with multiple classes of negative and positive customers. Theoretical Computer Science, 155, 141–156.

    Article  MathSciNet  MATH  Google Scholar 

  40. Gelenbe, E., & Labed, A. (1998). G-networks with multiple classes of signals and positive customers. European Journal of Operations Research, 108(2), 293–305.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Romoozi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romoozi, M., Fathy, M. & Babaei, H. A Content Sharing and Discovery Framework Based on Semantic and Geographic Partitioning for Vehicular Networks. Wireless Pers Commun 85, 1583–1616 (2015). https://doi.org/10.1007/s11277-015-2857-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2857-5

Keywords

Navigation