Skip to main content
Log in

Performance Analysis of Diagonal Eigenvalue Unity (DEU) Code Using NAND Subtraction and Spectral Direct Detection Techniques and Its Use with Triple-Play-Services in SAC-OCDMA

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the performance of optical code division multiple access system using the diagonal eigenvalue unity (DEU) code as a promising code for future optical networks. A comparison between the utilization of the NAND subtraction detection technique and the spectral direct detection (SDD) technique is presented to investigate which one provides better performance with the DEU code. In addition, a complete mathematical analysis for the two cases is presented. The performance of the two techniques is evaluated in terms of signal to noise ratio, bit error rate (BER), the effective received power, and phase induced intensity noise. Also, the variable weight DEU code is discussed. It demonstrates success for triple-play services (audio, video, and data) using the SDD technique to provide different quality of service (QoS) values to users. The results show that the SDD technique supports a larger number of users, reduces the receiver complexity, and provides better performance than the NAND subtraction technique. For a minimum acceptable BER of 10−9 for a telecommunication system, the direct detection technique supports 265 users, while the NAND subtraction supports 150 users only for (weight W = 3). Also, with variable weights in a single system, the performance of users with high weight is always better compared to that of lower weight users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Prucnal, P. (2006). Optical code division multiple access fundamentals and applications, 2006.

  2. Ahmed, N., Aljunid, S. A., Fadil, A., Ahmed, R. B., & Rashid, M. A. (2013). Performance enhancement of OCDMA system using NAND detection with modified double weight (MDW) code for optical access network. Optik - International Journal for Light and Electron Optics, 124(13), 1402–1407.

    Article  Google Scholar 

  3. Ahmed, H. Y., & Nisar, K. S. (2013). Diagonal Eigenvalue unity (DEU) code for spectral amplitude coding-optical (Vol. 19, no. 4, pp. 335–347). Amsterdam: Elsevier.

  4. Abdullah, M. K., Hasoon, F. N., Aljunid, S. A., & Shaari, S. (2008). Performance of OCDMA systems with new spectral direct detection (SDD) technique using enhanced double weight (EDW) code. Optics Communications, 4658–4662.

  5. Norazimah, M. Z., Aljunid, S. A., Fadhil, H. A., & Md zain, A.S. (2011). Analytical comparison of various SAC-OCDMA detection techniques. In 2011 IEEE 2nd international conference on photonics (ICP).

  6. Seyedzadeh, S., Sahbudin, R. K. Z., Abas, A. F., & Anas, S. B. A. (2013). Weight optimization of variable weight ocdma for triple-play services. In 2013 IEEE 4th international conference on photonics (ICP), Melaka.

  7. Djordjevic, I. B., Vasic, B., & Rorison, J. (2004). Multi-weight unipolar codes for multimedia spectral-amplitude-coding optical CDMA systems. IEEE Communications Letters, 8(4), 259–261.

    Article  Google Scholar 

  8. Nasaruddin, N., & Tsujioka, T. (2008). Design of strict variable-weight optical orthogonal codes for differentiated quality of service in optical CDMA networks. Computer Networks, 52(10), 2077–2086.

    Article  MATH  Google Scholar 

  9. Junita, M. N., Aljunid, S. A., Anuar, M. S., Arief, A. R., Rahim, R.A., Ahmed, R. B., & Saad, M. N. (2012) Modeling and simulation of variable weight zero cross correlation code in optical access network. In 3rd international conference on photonics, Penang.

  10. Fadhil, H. A., Aljunid, S. A., & Badlisha, R. (2009). Triple-play services using random diagonal code for spectral amplitude coding OCDMA systems. Journal of Optical Communications, 30(3), 155–159.

    Article  Google Scholar 

  11. Anas, S. B. A., Abdullah, M. K., Mokhtar, M., Aljunid, S. A., & Walker, S. D. (2009). Optical domain service differentiation using spectral-amplitude-coding. Optical Fiber Technology, 15(1), 26–32.

    Article  Google Scholar 

  12. Kakaee, M. H., Seyedzadeh, S., Fadhil, H. A., Anas, S. B. A., & Mokhtar, M. (2014). Development of multi-service (MS) for SAC-OCDMA systems. Optics & Laser Technology, 49–55.

  13. Wei, Z., Shalaby, H. M. H., & Ghafouri-Shiraz, H. (2001). Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems. Journal of Lightwave Technology, 19 (9), 1274–1281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa Mostafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, S., Mohamed, A.EN.A., Abd El-Samie, F.E. et al. Performance Analysis of Diagonal Eigenvalue Unity (DEU) Code Using NAND Subtraction and Spectral Direct Detection Techniques and Its Use with Triple-Play-Services in SAC-OCDMA. Wireless Pers Commun 85, 1831–1849 (2015). https://doi.org/10.1007/s11277-015-2869-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2869-1

Keywords

Navigation