Skip to main content
Log in

Performance Degradation of Cavity Backed Patch Antenna Due to Dielectric Coating and Its Improvement

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The cavity backed patch antenna embedded in dielectric coated structure is presented. The patch antenna is backed by a substrate integrated cavity. The aperture of antenna is surrounded by a thick dielectric material which acts as dielectric coating and significantly deteriorates impedance matching and radiation pattern of antenna. The radiation pattern of antenna is severely degraded due to excitation of surface waves in the surrounding dielectric coating. The proposed electromagnetic bandgap (EBG) structure in the form of via less metallic patches is placed on the surrounding dielectric coating. The EBG structure reduces the propagation of surface waves in the dielectric coating causing improvement in the radiation pattern of antenna. The input impedance matching of antenna is also improved. The simulated results are in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karmakar, N. C. (2002). Investigations into a cavity backed circular patch antenna. IEEE Transactions on Antennas and Propagation, 50(12), 1706–1715.

    Article  Google Scholar 

  2. Awida, M. H., Elkhouly, E., Fathy, A. E. (2010). Low cost high efficiency substrate integrated cavity-backed single element antenna. In APS conference, Toronto.

  3. Awida, M. H., Elkhouly, E., & Fathy, A. E. (2012). Low cost high efficiency substrate integrated cavity-backed single element antenna. IET Microwaves, Antennas and Propagation, 6(2), 151–157.

    Article  Google Scholar 

  4. Bozzi, M., Perregrini, L., Wu, K., & Arcioni, P. (2009). Current and future research trends in substrate integrated waveguide technology. Radioengineering, 18, 201–209.

    Google Scholar 

  5. Luo, G. Q., Hu, Z. F., Dong, L. X., & Sun, L. L. (2008). Planar slot antenna backed by substrate integrated waveguide cavity. IEEE Antennas Wireless Propagation Letters, 7, 236–239.

    Article  Google Scholar 

  6. Yan, L., Hong, W., Hua, G., Chen, J. X., Wu, K., & Cui, T. J. (2004). Simulation and experiment on SIW slot array antennas. IEEE Microwave Wireless Components Letters, 14, 446–448.

    Article  Google Scholar 

  7. Awida, M. H., & Fathy, A. E. (2009). Substrate-integrated waveguide Ku-band cavity-backed 2 × 2 microstrip patch array antenna. IEEE Antennas Wireless Propagation Letters, 8, 1054–1056.

    Article  Google Scholar 

  8. Awida, M. H., Suleiman, S. H., & Fathy, A. E. (2011). Substrate integrated cavity backed patch arrays: A low cost approach for bandwidth enhancement. IEEE Transactions on Antennas and Propagation, 59(4), 1155–1163.

    Article  Google Scholar 

  9. Bohorquez, J. C., Pedraza, H. A. F., Pinzon, I. C. H., Castiblanco, J. A., Pena, N., & Guarnizo, H. F. (2009). Planar substrate integrated waveguide cavity-backed antenna. IEEE Antennas Wireless Propagation Letters, 8, 1139–1142.

    Article  Google Scholar 

  10. Luo, G. Q., Hu, Z. F., Li, W. J., Zhang, X. H., Sun, L. L., & Zheng, J. F. (2012). Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes. IEEE Transactions on Antennas and Propagation, 60(4), 1698–1704.

    Article  Google Scholar 

  11. Giuppi, F., Georgiadis, A., Collado, A., Bozzi, M., & Perregrini, L. (2010). Tunable SIWcavity backed active antenna oscillator. Electronics Letters, 46(15), 1053–1055.

    Article  Google Scholar 

  12. Saghati, A. P., & Entesari, K. (2013). A reconfigurable SIW cavity backed slot antenna with one octave tuning range. IEEE Transactions on Antennas and Propagation, 61(8), 3937–3945.

    Article  Google Scholar 

  13. Weily, A. R., Horvath, L., Esselle, K. P., Sanders, B. C., & Bird, T. S. (2005). A planar resonator antenna based on a woodpile EBG material. IEEE Transactions on Antennas and Propagation, 53(1), 216–223.

    Article  Google Scholar 

  14. Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexópoulos, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059–2074.

    Article  Google Scholar 

  15. Yang, F., & Rahmat-Samii, Y. (2003). Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Transactions on Antennas and Propagation, 51(10), 2691–2703.

    Article  Google Scholar 

  16. Coccioli, R., Yang, F. R., Ma, K. P., & Itoh, T. (1999). Aperture-coupled patch antenna on UC-PBG substrate. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2123–2130.

    Article  Google Scholar 

  17. Gonzalo, R., de Maagt, P., & Sorrolla, M. (1999). Enhanced patch antenna performance by suppressing surface waves using photonic-bandgap substrates. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2131–2138.

    Article  Google Scholar 

  18. Yang, F., & Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation, 51(10), 2936–2946.

    Article  Google Scholar 

  19. Yang, H. Y., & Alexopoulos, N. G. (1987). Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Transactions on Antennas and Propagation, 35(7), 860–863.

    Article  Google Scholar 

  20. Cheype, C., Serier, C., Thèvenot, M., Monédière, T., Reineix, A., & Jecko, B. (2002). An electromagnetic bandgap resonator antenna. IEEE Transactions on Antennas and Propagation, 50(9), 1285–1290.

    Article  Google Scholar 

  21. Weily, A. R., Esselle, K. P., Sanders, B. C., & Bird, T. S. (2003). Antennas based on 2-D and 3-D electromagnetic bandgap materials. IEEE Antennas and Propagation Society International Symposium, 4, 847–850.

  22. Bulu, I., Caglayan, H., & Ozbay, E. (2003). Highly directive radiation from sources embedded inside photonic crystals. Applied Physics Letters, 83(16), 3263–3265.

    Article  Google Scholar 

  23. Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., & Vincent, P. (2002). A metamaterial for directive emission. Physics Review Letters, 89(21), 213–902.

    Article  Google Scholar 

  24. Yang, F., & Rahmat-Samii, Y. (2009). Electromagnetic band gap structures in antenna engineering. New York: Cambridge University Press.

    Google Scholar 

  25. Frezza, F., Pajewski, L., Piuzzi, E., Ponti, C., Schettini, G. (2012). Advances in EBG resonator antenna research. In Proceedings of international symposium on antennas and propagation (pp. 1301–1304), Nagoya, Japan.

  26. Menudier, C., Thevenot, M., Monediere, T. & Jecko, B. F. (2007). EBG resonator antennas: state of the art and prospects. In International conference on antenna theory and techniques (pp. 37–43), Sevastopol, Ukraine.

  27. Hosseini, M., & Hakkak, M. (2008). Characteristics estimation for jerusalem cross-based artificial magnetic conductors. IEEE Antennas and Wireless Propagation Letters, 7, 58–61.

    Article  Google Scholar 

  28. Aktar, M. N., Shahin Uddin, M., Morshed, M., Amin, M. R., & Ali, M. M. (2012). Parametric performance analysis of patch antenna using EBG substrate. International Journal of Wireless and Mobile Networks (IJWMN), 4(5), 79–88.

    Article  Google Scholar 

  29. Bendaoudi, A., & Naoum, R. (2013). Circular patch antenna performance using EBG structure. ACEEE International Journal on Communications, 4(1), 34–38.

    Google Scholar 

  30. Venkateswaran, A. (2009). Analysis of planar EBG structures using transmission lines model. MSc Thesis, McGill University, Canada.

  31. Zeng, J. (2013). Compact electromagnetic band-gap structure (EBG) and its applications in antenna systems. MSc Thesis, Waterloo, Ontario, Canada.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Javid Asad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asad, M.J., Shafique, M.F. Performance Degradation of Cavity Backed Patch Antenna Due to Dielectric Coating and Its Improvement. Wireless Pers Commun 85, 2261–2272 (2015). https://doi.org/10.1007/s11277-015-2903-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2903-3

Keywords