Skip to main content
Log in

DOA and Polarization Estimation Based on Sparse COLD Array

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Direction of arrival (DOA) ambiguity influences the performance of array signal processing. To address this problem, a DOA and polarization estimation method is proposed in this paper. Based on sparse uniform concentric semi-circular array consisting of concentred orthogonal loop and dipole pairs, the actual array steering vector can be transformed into a virtual one without additional computation. By applying dot division and dot product operation to outer and inner circular ring array spatial steering vectors, two new spatial steering vectors of arrays whose inter-element spacing are less and much larger than half wavelength are obtained respectively, the cyclic phase ambiguity is disambiguated effectively. In the proposed algorithm, all the array elements (actual and virtual) contribute toward the derivation of both the coarse estimations and the fine estimations, thereby achieving full exploitation of the entire physical aperture, the estimation precision is herein improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nehorai, A., & Paldi, E. (1991). Vector-sensor array processing for electromagnetic source localization. In 25th Asilomar conference signals, syst, comput., Pacific Grove, CA, pp. 566–572.

  2. Nehorai, A., & Paldi, E. (1994). Vector sensor array processing for electromagnetic source localization. IEEE Transactions on Signal Processing, 42(2), 376–398.

    Article  Google Scholar 

  3. Li, J. (1993). Direction and polarization estimation using arrays with small loops and short dipoles. IEEE Transactions on Antennas and Propagation, 41(3), 379–387.

    Article  Google Scholar 

  4. Zoltowski, M. D., & Wong, K. T. (2000). Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid. IEEE Transactions on Signal Processing, 48(8), 2205–2210.

    Article  Google Scholar 

  5. Zoltowski, M. D., & Wong, K. T. (2000). ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Transactions on Signal Processing, 48(8), 2195–2204.

    Article  Google Scholar 

  6. Wong, K. T., & Zoltowski, M. D. (2000). Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations. IEEE Transactions on Antennas and Propagation, 48(5), 671–681.

    Article  Google Scholar 

  7. Wong, K. T., & Zoltowski, M. D. (2000). Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace. IEEE Transactions on Antennas and Propagation, 48(8), 1235–1245.

    Article  Google Scholar 

  8. Wong, K. T., & Zoltowski, M. D. (1997). Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation. IEEE Transactions on Antennas and Propagation, 45(10), 1467–1474.

    Article  Google Scholar 

  9. Wang, L. M., Yang, L., Wang, G. B., Chen, Z. H., & Zou, M. G. (2014). Uni-vector-sensor dimensionality reduction MUSIC algorithm for DOA and polarization estimation. Mathematical Problems in Engineering, 2014, 682472. doi:10.1155/2014/682472.

    Google Scholar 

  10. Zhang, X. F., Li, J. F., Chen, H., & Xu, D. Z. (2012). Trilinear decomposition-based two dimensional DOA estimation algorithm for arbitrarily spaced acoustic vector-sensor array subjected to unknown locations. Wireless Personal Communications, 67(4), 859–877.

    Article  Google Scholar 

  11. Wang, G. B. (2015). A joint parameter estimation method with conical conformal CLD pair array. Progress In Electromagnetics Research C, 57, 99–107.

    Article  Google Scholar 

  12. Li, J., Stoica, P., & Zheng, D. (1996). Efficient direction and polarization estimation with a COLD array. IEEE Transactions on Antennas and Propagation, 44(4), 539–547.

    Article  Google Scholar 

  13. Wang, L. M., Chen, Z. H., Wang, G. B., & Rao, X. (2015). Estimating DOA and polarization with spatially spread loop and dipole pair array. Journal of Systems Engineering and Electronics, 26(1), 44–49.

    Article  Google Scholar 

  14. Li, J., & Compton, R. T, Jr. (1991). Angle and polarization estimation using ESPRIT with polarization sensitive array. IEEE Transactions on Antennas and Propagation, 39(9), 1376–1383.

    Article  Google Scholar 

  15. Li, J., & Compton, R. T, Jr. (1992). Two-dimensional angle and polarization estimation using the ESPRIT algorithm. IEEE Transactions on Antennas and Propagation, 40(5), 550–555.

    Article  Google Scholar 

  16. Li, J., & Compton, R. T., Jr. (1991). Angle estimation using a polarization sensitive array. IEEE Transactions on Antennas and Propagation, 39(10), 1539–1543.

    Article  Google Scholar 

  17. Wang, L. M., Zou, M. G., Wang, G. B., & Chen, Z. H. (2015). Direction finding and information detection algorithm with an L-shaped CCD array. IETE Technical Review, 32(2), 114–122.

    Article  Google Scholar 

  18. Wong, K. T., & Lai, A. K. Y. (2005). Inexpensive upgrade of base-station dumb-antennas by two magnetic loops for blind adaptive downlink beamforming. IEEE Antennas and Propagation Magazine, 47(1), 189–193.

    Article  Google Scholar 

  19. Yuan, X., Wong, K. T., & Agrawal, K. (2012). Polarization estimation with a dipole–dipole pair, a dipole-loop pair, or a loop-loop pair of various orientations. IEEE Transactions on Signal Processing, 60(5), 2442–2452.

    MathSciNet  Google Scholar 

  20. Wong, K. T. (2001). Direction finding/polarization estimationdipole and/or loop triad(s). IEEE Transactions on Aerospace and Electronic’ Systems, 37(2), 679–684.

    Article  Google Scholar 

  21. Yeung, C. K. A., & Wong, K. T. (2009). CRB: Sinusoid-sources estimation using collocated dipoles/loops. IEEE Transactions on Aerospace and Electronic’ Systems, 45(1), 94–109.

    Article  Google Scholar 

  22. Yuan, X. (2012). Quad compositions of collocated dipoles and loops: For direction finding and polarization estimation. IEEE Antennas and Wireless Propagation Letters, 11, 1044–1047.

    Article  Google Scholar 

  23. Li, J. F., & Zhang, X. F. (2013). Closed-form blind 2D-DOD and 2D-DOA estimation for MIMO radar with arbitrary arrays. Wireless Personal Communications, 69, 175–186. doi:10.1007/s11277-012-0567-9.

    Article  Google Scholar 

  24. Yuan, X., Wong, K. T., Xu, Z., & Agrawal, K. (2012). Various compositions to form a triad of collocated dipoles/loops, for direction finding and polarization estimation. IEEE Sensors Journal, 12(6), 1763–1771.

    Article  Google Scholar 

  25. Wong, K. T., & Yuan, X. (2011). Vector cross-product direction-finding with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops. IEEE Transactions on Signal Processing, 59(1), 160–171.

    Article  MathSciNet  Google Scholar 

  26. Wong, K. T., Li, L., & Zoltowski, M. D. (2004). Root-MUSIC-based direction-finding and polarization-estimation using diversely-polarized possibly-collocated antennas. IEEE Antennas and Wireless Propagation Letters, 3(8), 129–132.

    Article  Google Scholar 

  27. Abramovich, Y. I., Spencer, N. K., & Gorokhov, A. Y. (1999). Resolving manifold ambiguities in direction-of-arrival estimation for nonuniform linear antenna arrays. IEEE Transactions on Signal Processing, 47(10), 2629–2643.

    Article  MathSciNet  Google Scholar 

  28. Kim, Y.-S., & Kim, Y.-S. (1999). Improve resolution capability via virtual expansion of array. Electronics Letters, 35(19), 1596–1597.

    Article  Google Scholar 

  29. Kim, Y. S., & Kim, C. J. (2004). Spatially close signals separation via array aperture expansions and spatial spectrum averaging. ETRI Journal, 26(1), 45–47.

    Article  Google Scholar 

  30. Mathews, C. P., & Zoltowski, M. D. (1994). Eigenstructure techniques for 2-D angle estimation with uniform circular array. IEEE Transactions on Signal Processing, 42(9), 2395–2407.

    Article  Google Scholar 

  31. Chan, S. C., & Chen, H. H. (2007). Uniform concentric circular arrays with frequency-invariant characteristics—theory, design, adaptive beamforming and DOA estimation. IEEE Transactions on Signal Processing, 55(1), 165–177.

    Article  MathSciNet  Google Scholar 

  32. Chen, H. H., Chan, S. C., & Ho, K. L. (2007). Adaptive beamforming using frequency invariant uniform concentric circular arrays. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(9), 1938–1949.

    Article  Google Scholar 

  33. Wong, K. T., & Zoltowski, M. D. (1998). Direction-finding with sparse rectangular dual-size spatial invariance arrays. IEEE Transactions on Aerospace and Electronic’ Systems, 34(4), 1320–1336.

    Article  Google Scholar 

  34. Wong, K. T. (1999). Geolocation for partially polarized electromagnetic sources using multiple sparsely and uniformly spaced spatially stretched vector sensors. In Proceedings of IEEE International Conference Circuits System, vol. 3, pp. 170–174.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Contract (Nos. 61201295, 61231017, 61100156, 61402365). The authors would like to thank the anonymous reviewers and the associated editor for their valuable comments and suggestions that improved the clarity of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanmei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, L., Wang, G. et al. DOA and Polarization Estimation Based on Sparse COLD Array. Wireless Pers Commun 85, 2447–2462 (2015). https://doi.org/10.1007/s11277-015-2914-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2914-0

Keywords

Navigation