Skip to main content

Advertisement

Log in

A Fair Power Splitting Algorithm for Simultaneous Wireless Information and Energy Transfer in CoMP Downlink Transmission

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A power splitting approach for simultaneous wireless information and energy transfer is provided in this paper. We consider coordinated multipiont downlink transmission with M base stations (BSs) and J mobile stations (MSs). The main goal of this paper is to maximize per-MS data rate and receiving energy by dynamically optimizing transmitting beamformer. To improve fairness, this problem can be formulated to maximize the minimum rate of all J MSs with per-BS transmitting power constraints and per-MS receiving energy constraints, which is NP-hard problem. Minimum mean square error receiver, affine approximation and alternative convex optimization (ACO) methods are introduced to decompose the original NP-hard problem to several convex subproblems which can be solved by second-order cone programming with low rank (which is equal to the number of data streams) solutions, and then a fast heuristic algorithm is provided to solve the original problem. Numerical results show that the proposed algorithm can achieve fairness, and outperforms sum rate scheme in terms of fairness and outage probability. The fast convergency also demonstrates the proposed algorithm’s good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jungnickel, V., Manolakis, K., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52, 44–51.

    Article  Google Scholar 

  2. Osseiran, A., et al. (2014). Scenarios for the 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52, 44–51.

    Article  Google Scholar 

  3. Dolgov, A., Zane, R., & Popovic, Z. (2010). Power management system for online low power RF energy harvesting optimization. IEEE Transactions Circuits and Systems, 57, 1802–1811.

    Article  MathSciNet  Google Scholar 

  4. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12, 1989–2001.

    Article  Google Scholar 

  5. Krikidis, I., Timotheou, S., Nikolaouand, S., Zheng, G., Ng, D. W. K. Z., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52, 104–110.

    Article  Google Scholar 

  6. Nintanavongsa, P., Muncuk, U., Lewis, D. R., & Chowdhury, K. R. (2012). Design optimization and implementation for RF energy harvesting circuits. IEEE RFID Virtual Journal, 2, 24–33.

    Google Scholar 

  7. Pinuela, M., Mitcheson, P. D., & Lucyszyn, S. (2013). Ambient RF energy harvesting in urban and semi-urban environments. IEEE Transactions on Microwave Theory and Techniques, 61, 2715–2726.

    Article  Google Scholar 

  8. Varshney, L. R. (2008). Transporting information and energy simultaneously, IEEE Int. Symp. Inf. Theory (ISIT), pp. 1612–1616

  9. Grover, P., & Sahai, A. (2010) Shannon meets Tesla: Wireless information and power transfer, IEEE Int. Symp. Inf. Theory (ISIT), pp. 2363-2367

  10. Liu, L., Zhang, R., & Chua, K. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12, 288–300.

    Article  Google Scholar 

  11. Zheng, G., Ho, Z., Jorswieck, E. A., & Ottersten, B. (2014). Information and energy cooperation in cognitive radio networks. IEEE Transactions on Signal Processing, 62, 2290–2303.

    Article  MathSciNet  Google Scholar 

  12. Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Communications Letters, 16(11), 1772–1775.

    Article  Google Scholar 

  13. Shen, C., Li, W.-C., & Chang, T.-H. (2014). Wireless information and energy transfer in multi-antenna interference channel. IEEE Transactions on Signal Processing, 62, 6249–6264.

    Article  MathSciNet  Google Scholar 

  14. Timotheou, S., Krikidis, I., Zheng, G., & Ottersten, B. (2014). Beamforming for MISO interference channels with QoS and RF energy transfer. IEEE Transactions on Wireless Communications, 13, 2646–2658.

    Article  Google Scholar 

  15. Shi, Q., Xu, W., Chang, T.-H., Wang, Y., & Song, E. (2014). Joint beamforming and power splitting for MISO interference channel with SWIPT: An SOCP relaxation and decentralized algorithm. IEEE Transactions on Signal Processing, 62, 6149–6208.

    MathSciNet  Google Scholar 

  16. Park, J., & Clerckx, B. (2014). Joint wireless information and energy transfer in a K-user MIMO interference channel. IEEE Transactions on Wireless Communications, 13, 5781–5796.

    Article  Google Scholar 

  17. Rubio, J., & Pascual-Iserte, A. (2013). Simultaneous wireless information and power transfer in multiuser MIMO systems, IEEE Global Communications Conference (GLOBECOM), pp. 2755-2760

  18. Wu, J., Zhang, Z., Yu, H., & Wen, Y. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29, 35–41.

    Article  Google Scholar 

  19. Liu, C., Zhang, L., Zhu, M., Wang, J., Cheng, L., & Chang, G.-K. (2013). A novel multi-service small-cell cloud radio access network for mobile backhaul and computing based on radio-over-fiber technologies. IEEE Journal of Lightwave Technology, 31, 2869–2875.

    Article  Google Scholar 

  20. Zhang, J., Chen, R., Andrews, J. G., Ghosh, A., & Heath, R. W, Jr. (2009). Networked MIMO with clustered linear precoding. IEEE Wireless Communications, 8, 1910–1921.

    Article  Google Scholar 

  21. Shigeta, R., Sasaki, T., Quan, D. M., Kawahara, Y., Vyas, R. J., Tentzeris, M. M., et al. (2013). Ambient-RF-energy-harvesting sensor device with capacitor-leakage-aware duty cycle control. IEEE Sensors Journal, 13, 2973–2983.

    Article  Google Scholar 

  22. Gerlach, D., & Paulraj, A. (1996). Base station transmitting antenna arrays for multipath environments. Signal Processing, 54, 59–73.

    Article  MATH  Google Scholar 

  23. Boche, H., & Schubert, M. (2006) Resource allocation in multiantenna systems-achieving max-min fairness by optimizing a sum of inverse SIR, IEEE Trans. on Signal Processing, 54, pp. 1990 C 1997

  24. Liu, Y.-F., Dai, Y.-H., & Luo, Z.-Q. (2013). Max–min fairness linear transceiver design for a multi-user MIMO interference channel. IEEE Transactions on Signal Processing, 61, 2413–2423.

    Article  MathSciNet  Google Scholar 

  25. Cai, D., Quek, T., & Tan, C. W. (2011). A unified analysis of max–min weighted sinr for mimo downlink system. IEEE Transactions on Signal Processing, 59, 3850–3862.

    Article  MathSciNet  Google Scholar 

  26. Razaviyayn, M., Hong, M., & Luo, Z-Q, (2012) Linear Transceiver Design for a MIMO Interfering Broadcast Channel Achieving Max-Min Fairness

  27. Luo, Z.-Q., Ma, W.-K., So, A. M.-C., Ye, Y., & Zhang, S. (2010). Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27, 20–34.

    Article  Google Scholar 

  28. Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38, 49–95.

    Article  MathSciNet  MATH  Google Scholar 

  29. Lobo, M., Vandenberghe, L., Boyd, S., & Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 284, 193–228.

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, L., Liang, K., Cao, G., Qian, R., & Lopez-Perez, D. (2014). An enhanced signal-timing-offset compensation algorithm for coordinated multipoint-to-multiuser systems. IEEE Communications Letters, 18, 983–986.

    Article  Google Scholar 

  31. Christensen, S. S., Agarwal, R., de Carvalho, E., & Cioffi, J. M. (2008). Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design. IEEE Transactions on Wireless Communications, 12, 4792–4799.

    Article  Google Scholar 

  32. Boyd, S. EE364b: Convex Optimization II, available at http://stanford.edu/class/ee364b/

  33. Grant, M., & Boyd. S. (2013) CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx, September

Download references

Acknowledgments

This work was supported in part by the program of China Scholarships Council (No. 201406960046), National Natural Science Foundation of China (No. 61372070), Natural Science Basic Research Plan in Shaanxi Province of China (2015JM6324), Hong Kong, Macao and Taiwan Science & Technology Cooperation Program of China (2015DFT10160), EU FP7 Project MONICA (PIRSES-GA-2011-295222), National High-Tech R & D Program (863 Program 2015AA015701), UK EPSRC Project DANCER (EP/K002643/1), the National High-Tech R&D Program (863 Program 2015AA015701) and the 111 Project (B08038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Liang or Liqiang Zhao.

Appendices

Appendix 1: Proof of Theorem 1

Since (26a) and (26c) are affine objective and constraint, respectively, we only have to represent the rest constraints (26b) and (26d). By introducing slack variables \(q_{j,m}, \forall j \in \mathcal {J}, m\in \mathcal {M}\), (26d) is equivalent to

$$\begin{aligned} ||{\dot{{\mathbf {\Lambda }}}}^{1/2}_m {\mathbf {v}}_j||^2&\le q_{j,m} \quad\forall j \in \mathcal {J}, m\in \mathcal {M} \end{aligned}$$
(33)
$$\begin{aligned} \sum \limits _{j \in J} q_{j,m}&\le P,\quad \forall m \in \mathcal {M} , \end{aligned}$$
(34)

where (33) can be further rewritten as [29]

$$ \left| \left| \left[ \begin{array}{ccc} 2{\dot{{\mathbf {\Lambda }}}}^{1/2}_m {\mathbf {v}}_j\\ q_{j,m} - 1 \end{array}\right] \right| \right| \le q_{j,m} + 1,\quad\forall j \in \mathcal {J}, m\in \mathcal {M}. $$
(35)

Then, the transformation of (26d) is finished.

Next, the constraint (26b) is equivalent to

$$\bar{E}_j \le \frac{t + \log \det (\bar{W}_j) + 1}{ \bar{W}_j},$$
(36)

then we represent \(\bar{E}_j\) as follows:

$$\begin{aligned} \bar{E}_j= & {} 1 + \mu _j{\mathbf {v}}_j^H {\dot{{\mathbf {H}}}}_j^H {\mathbf {a}}_j {\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_j - 2 \sqrt{\mu _j}{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_j \\&+\,\mu _j\sum \limits _{i\ne j} ({\mathbf {v}}_i^H {\dot{{\mathbf {H}}}}_j^H {\mathbf {a}}_j {\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_i ) +\,(\mu _j\sigma _j^2 + \sigma _c^2) {\mathbf {a}}_j {\mathbf {a}}_j^H \\= & {} 1 + ||\sqrt{\mu _j}{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_j - \mu _j{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\dot{{\mathbf {H}}}}_j^H {\mathbf {a}}_j||^2 \\&-\mu _j{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j (\mu _j{\dot{{\mathbf {H}}}}_j^H {\mathbf {a}}_j {\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j)^{-1}{\dot{{\mathbf {H}}}}_j^H {\mathbf {a}}_j \\&+\,\mu _j\sum \limits _{i\ne j} || {\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_i||^2 + (\mu _j\sigma _j^2+\sigma _c^2) {\mathbf {a}}_j {\mathbf {a}}_j^H \\= & {} ||\sqrt{\mu _j}{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_j - \mu _j{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\dot{{\mathbf {H}}}}_j^H {\mathbf {a}}_j||^2 + \sum \limits _{i\ne j} || \sqrt{\mu _j}{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_i||^2 \\&+\,(\mu _j\sigma _j^2+\sigma _c^2) {\mathbf {a}}_j {\mathbf {a}}_j^H . \end{aligned}$$
(37)

Similar to the case in (26d), by introducing slack variables \(\zeta _{j,i}, \forall j,i \in \mathcal {J} \), equation (36) is equivalent the following equations:

$$ ||\sqrt{\mu _j}{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_j - \mu _j{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\dot{{\mathbf {H}}}}_j^H {\mathbf {a}}_j||^2 \le \zeta _{j,j}, \quad\forall j \in \mathcal {J} $$
(38)
$$ || \sqrt{\mu _j}{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_i||^2 \le \zeta _{j,i},\quad \forall i \ne j $$
(39)
$$ \sum \limits _{\forall i \in \mathcal {J}} \zeta _{j,i} \le \frac{t + \log \det (\bar{W}_j) + 1}{ \bar{W}_j} - (\mu _j\sigma _j^2+\sigma _c^2) {\mathbf {a}}_j {\mathbf {a}}_j^H ,\quad \forall j \in \mathcal {J}. $$
(40)

where (38) and (39) can be further rewritten as

$$ \left| \left| \left[ \begin{array}{ccc} 2(\sqrt{\mu _j}{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_j - \mu _j{\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\dot{{\mathbf {H}}}}_j^H {\mathbf {a}}_j)\\ \zeta _{j,j} - 1 \end{array}\right] \right| \right| \le \zeta _{j,j} + 1,\quad\forall j \in \mathcal {J} $$
(41)
$$\left| \left| \left[ \begin{array}{ccc} 2( \sqrt{\mu _j} {\mathbf {a}}_j^H {\dot{{\mathbf {H}}}}_j {\mathbf {v}}_i)\\ \zeta _{j,i} - 1 \end{array}\right] \right| \right| \le \zeta _{j,i} + 1,\quad\forall i \ne j. $$
(42)

Appendix 2: Proof of Corollary 1

Letting \(\mu _j = \gamma _j^2, \forall j \in \mathcal {J}\) and then \(\bar{E}_j\) can be rewritten as follows

$$ \bar{E}_j = ||F_j^{\frac{1}{2}}\gamma _j - F_j^{-\frac{1}{2}}Y_{j,j}^{\frac{1}{2}}||^2 + \sigma _c^2 {\mathbf {a}}_j {\mathbf {a}}_j^H - Y_{j,j}F_j^{-1}. $$
(43)

After substituting it to the first constraint of (30), we have

$$ ||F_j^{\frac{1}{2}}\gamma _j - F_j^{-\frac{1}{2}}Y_{j,j}^{\frac{1}{2}}||^2 \le L_j, $$
(44)

and finally we can get

$$ \ \ \left| \left| \left[ \begin{array}{ccc} 2(F_j^{\frac{1}{2}}\gamma _j - F_j^{-\frac{1}{2}}Y_{j,j}^{\frac{1}{2}})\\ L_j-1 \end{array}\right] \right| \right| \le L_j+1, \forall j\in \mathcal {J}. $$
(45)

It is easy to transform the second constraint of (30) by \(\gamma ^2 <= N_j\) and then reformulate it as follows:

$$ \left| \left| {\left[ \begin{array}{c} 2(\gamma _j)\\ N_j - 1 \end{array}\right] }\right| \right| \le N_j+1 \quad \gamma _j \in [0,1], \forall j \in \mathcal {J}. $$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Zhao, L., Yang, K. et al. A Fair Power Splitting Algorithm for Simultaneous Wireless Information and Energy Transfer in CoMP Downlink Transmission . Wireless Pers Commun 85, 2687–2710 (2015). https://doi.org/10.1007/s11277-015-2928-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2928-7

Keywords

Navigation