Skip to main content
Log in

Arbitrary Shaped Beamforming Codebook Design for Millimeter-Wave Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To transmit same data flow to users distributed in different directions simultaneously, this paper proposes a multi-beam codebook design scheme for multicast scenario based on phased array. By setting up and solving optimization model, weight vector can be found to generate beam that approximating the target beam with expected shape. Numerical examples are displayed, showing that the scheme is of great flexibility, both in methods to assign target beam, and different shapes that can be applied in different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

WPAN:

Wireless personal area networks

WLAN:

Wireless local area networks

PBSS:

Personal-basic-service-set

PCP:

PBSS control point

MMAD:

Minimum mean absolute difference

NLGP:

Nonlinear goal programming

AF:

Array factor

References

  1. Maruhashi, S., Kishimoto, M., Ito, M., et al. (2005). Wireless uncompressed-HDTV-signal transmission system utilizing compact 60-GHz-band transmitter and receiver. In Proceedings of IEEE MTT-S international microwave symposium digest, Long Beach, CA (pp. 1867–1870).

  2. Xia, P., Qin, X., Niu, H., et al. (2007). Short range gigabit wireless communications systems: Potentials, challenges and techniques. In Proceedings of IEEE international conference on ultra-wideband, ICUWB Singapore, (pp. 123–128).

  3. IEEE Standards 802.15.3c—Part 15.3. (2009). Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension. New York, USA, IEEE Computer Society.

  4. IEEE P802.11ad/D0.1—Part 11. (2010). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 6: Enhancements for Very High Throughput in the 60 GHz Band. New York, USA, IEEE 802.11 Committee of the IEEE Computer Society.

  5. Foerster, J. R., Pendergrass, M., & Molisch, A. F. (2003). Channel model for ultra-wideband personal area networks. IEEE Wireless Communications, 10(6), 14–21.

    Article  Google Scholar 

  6. Liu, C., Skafidas, E., Pollock, T. S., & Evans, R. J. (2006). Angle of arrival extended S-V model for the 60 GHz wireless desktop channel. In The 17th annual IEEE international symposium on personal, indoor and mobile radio communications (PIMRC ’06 ) (pp. 1–6).

  7. Liu, C., Skafidas, E., Pollock, T. S., & Evans, R. J. (2007). Characterization of the 60 GHz wireless desktop channel. IEEE Transactions on Antennas and Propagation, 55(7), 2129–2133.

    Article  Google Scholar 

  8. Yoon, S., Jeon, T., & Lee, W. (2009). Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks. IEEE Journal on Selected Areas in Communications, 27(8), 1425–1432.

    Article  Google Scholar 

  9. Yong, S. K, et al. TG3c Channel Modeling Sub-committee Final Report. https://mentor.ieee.org/802.15/dcn/07/15-07-0584-01-003c-tg3c-channel-modeling-sub-committee-final-report.doc.

  10. Maltsev, A., et al. Channel models for 60 GHz WLAN systems. https://mentor.ieee.org/802.11/dcn/09/11-09-0334-08-00ad-channel-models-for-60-ghz-wlan-systems.doc.

  11. Sawada, H., Fujita, K., Kato, S., et al. (2010). Impulse response model for the cubicle environments at 60 GHz. In Proceedings of the 2010 Asia Pacific Microwave Conference —(APMC 2010), Yokohama, Japan (pp. 2131–2134).

  12. Sawada, V., Fujita, K., Kato, S., et al. (2010). Impulse response model and parameters for indoor channel modeling at 60 GHz. In Proceedings of the 2010 IEEE Vehicular Technology Conference ( VTC 2010-Spring), Taipei, Taiwan (pp. 1–5).

  13. Papio, A., Grau, A., Balcells, J., et al. (2010). 60 GHz channel characterization using a scattered mapping technique. In Proceedings of the 2010 4th European conference on antennas and propagation (EuCAP ), Barcelona, Spain (pp. 1–5).

  14. Wang, J.-Y., Lan, Z., Sum, C.-S., et al. (2009). Beamforming codebook design and performance evaluation for millimeter-wave WPAN. In Proceedings of the IEEE vehicular technology conference (VTC 2009 Fall), Anchorage, USA (pp. 1–6).

  15. Zou, W.-X., Cui, Z.-F., Li, B., Zhou, Z., & Hu, Y.-C. (2011). Beamforming codebook design and performance evaluation for 60 GHz wireless communication. In Communications and information technologies (ISCIT ) (pp. 30–35).

  16. Zou, W.-X., Cui, Z.-F., Li, B., Zhou, Z., & Hu, Y.-C. (2012). N phases based beamforming codebook design scheme for 60 GHz wireless communication. Journal of Beijing University of Posts and Telecommunications, 35(3), 1–5.

    Article  Google Scholar 

  17. Zou, W.-X., Du, G.-L., Li, B., & Zhou, Z. (2012). A unified codebook for fast beam searching in millimeter-wave communications. In 2012 International conference on computational problem-solving (ICCP ), Leshan, China (pp. 218–223).

  18. Zou, W.-X., Guo, C., Du, G.-L., & Wang, Z.-Y. (2014). A new codebook design scheme for fast beam searching in millimeter-wave communications. China Communications, 11(6), 12–22.

    Article  Google Scholar 

  19. Zou, W.-X., Du, G.-L., Li, B., Cui, Z.-F., Hu, Y.-C., & Zhang, F. (2012). A novel beam search algorithm for 60 GHz millimeter wave communication. Journal of Electronics and Information Technology, 34(3), 683–688.

  20. Zou, W.-X., Du, G.-L., Li, B., & Zhou, Z. (2013). Step-wisely refinement based beam searching scheme for 60 GHz communications. Wireless Personal Communications, 71(4), 2993–3010.

  21. Honghua, X., & Ke, L. (2010). Research on wireless communication networks in the 60 GHz frequency band. In 2010 International conference on internet technology and applications (iTAP ), Wuhan, China (pp. 1–4).

  22. Wang, J., Lan, Z., Pyo, C.-W., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1390–1399.

    Article  Google Scholar 

  23. Wang, J., Lan, Z., Pyo, C.-W., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. In GLOBECOM 20092009 IEEE global telecommunications conference, Honolulu, HI, USA (pp. 1–6).

  24. Peng, X.-M., & Eldad, P. (2012). IEEE 802.11 China MM-Wave (CMMW) Study Group PAR. https://mentor.ieee.org/802.11/dcn/12/11-12-0140-09-cmmw-ieee-802-11-cmmw-sg-par.doc.

  25. Michael, C. (2000). Smart antennas. IEEE Antennas and Propagation Magazine, 42(3), 129–136.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 863 Program of China under Grant No. 2015AA01A703, the Fundamental Research Funds for the Central Universities under Grant No. 2014ZD03-02, fund of SKL of MMW (No. K201501), NSFC (No. 61171104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Wx., Guo, C., Du, Gl. et al. Arbitrary Shaped Beamforming Codebook Design for Millimeter-Wave Communications. Wireless Pers Commun 85, 2773–2794 (2015). https://doi.org/10.1007/s11277-015-2932-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2932-y

Keywords

Navigation