Skip to main content
Log in

Challenges and Implementation on Cross Layer Design for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cross-layer design (CLD) has emerged as an important area in wireless sensor networks (WSNs). Cross-layer enables interaction between different non- adjacent layers and, thereby, exchanging information between layers, which, indeed is not possible in traditional architectures. CLD is used for enhancing the performance of the existing architectures by utilizing the flexible prospects of the protocol layers to improve system performance and to satisfy QoS demands of the applications. The CLD leads to increase in network efficiency and optimized network throughput. In this paper, the various cross-layer design methodologies for WSNs have been reviewed, which have basically been designed to enhance the network performance in WSN. At the end, the paper proposes a CLD based on ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pardue, M. D. (1987). In Military communications conference—crisis communications: The promise and reality. MILCOM 1987 (Vol. 1, pp. 0199–0203). IEEE. doi:10.1109/MILCOM.1987.4795182.

  2. Shakkottai, S., Rappaport, T. S., & Karlsson, P. C. (2003). Communications Magazine, IEEE, 41(10), 74. doi:10.1109/MCOM.2003.1235598.

  3. Srivastava, V., & Motani, M. (2005). Communications Magazine, IEEE, 43(12), 112. doi:10.1109/MCOM.2005.1561928.

  4. Melodia, T., Vuran, Mehmet C., & Pompili, D. (2006). In M. Cesana, & L. Fratta (Eds)., Wireless systems and network architectures in next generation internet. Lecture Notes in Computer Science (Vol. 3883, pp. 78–92). Springer: Berlin. doi:10.1007/117506737.

  5. Enkitasubramaniam, P., Adireddy, S., & Tong, L. (2003). In Military communications conference, 2003. MILCOM ’03. (Vol. 1, pp. 705–710). IEEE. doi:10.1109/MILCOM.2003.1290190.

  6. ElBatt, T., & Ephremides, A. (2004). Wireless Communications, IEEE Transactions on, 3(1), 74. doi:10.1109/TWC.2003.819032.

  7. Yuan, J., Li, Z., Yu, W., & Li, B. (2005). In Proceedings of first international conference on wireless internet, 2005 (pp. 47–54). IEEE. doi:10.1109/WICON.2005.2.

  8. van Hoesel, L., Nieberg, T., Wu, J., & Havinga, P. J. (2004). Wireless Communications, 11(6), 78. doi:10.1109/MWC.2004.1368900.

  9. Wang, H., Yang, Y., Ma, M., He, J., & Wang, X. (2008). Wireless Communications, IEEE Transactions on, 7(10), 3759. doi:10.1109/T-WC.2008.070079.

  10. Sichitiu, M. L. (2004). In INFOCOM (Vol. 3, pp. 1740–1750). IEEE.

  11. Shi, Q., Comaniciu, C., Wang, D., & Tureli, U. (2011). International Journal of Communication Systems, 24(7), 872. doi:10.1002/dac.1195.

  12. Gao, F., Wen, H., Zhao, L., & Chen, Y. (2013). In 2013 International conference on sensor network security technology and privacy communication system (SNS PCS) (pp. 5–8). IEEE. doi: 10.1109/SNS-PCS.2013.6553824.

  13. Wu, W., Cao, J., Wu, H., & Li, J. (2012). In 2012 9th international conference on ubiquitous intelligence computing and 9th international conference on autonomic trusted computing (UIC/ATC) (pp. 306–313). IEEE. doi: 10.1109/UIC-ATC.2012.33.

  14. Beheshti, B. D., & Michel, H. E. (2012). In Systems, applications and technology conference (LISAT), 2012 IEEE Long Island (pp. 1–6). IEEE. doi: 10.1109/LISAT.2012.6223204.

  15. Muraleedharan, R., & Osadciw, L. A. (2006). In INFOCOM 2006. Proceedings of 25th IEEE international conference on computer communications (pp. 1–2) IEEE. doi: 10.1109/INFOCOM.2006.89.

  16. Yuan, J., & Yu, W. (2006). In Proceedings of of the GlobeCom 2006. San Francisco: IEEE Communications Society. IEEE.

  17. Liang, Q. (2005). In Military communications conference, 2005. MILCOM 2005 (Vol. 3, pp. 1862–1868). IEEE. doi: 10.1109/MILCOM.2005.1605944.

  18. Bai, F., Munasinghe, K. S., & Jamalipour, A. (2011). International Journal of Communication Systems, 24(5), 628. doi:10.1002/dac.1181.

  19. Lin, C. K., & Kokkinos, T. (2013). Sensors Journal, IEEE, 13(3), 1044. doi:10.1109/JSEN.2012.2234737.

  20. Mohaghegh, M., Manford, C., & Sarrafzadeh, A. (2011). In 2011 IEEE 3rd international conference on communication software and networks (ICCSN), (pp. 528–533). IEEE. doi: 10.1109/ICCSN.2011.6014950.

  21. Wang, Y., Vuran, M. C., & Goddard, S. (2012). Networking, IEEE/ACM Transactions on, 20(1), 305. doi:10.1109/TNET.2011.2159845.

  22. Karvonen, H., Pomalaza-Ráez, C., & Hämäläinen, M. (2014). ACM Transactions on, Sensors Network, 11(1), 16:1. doi:10.1145/2590810.

  23. Fang, W., Liu, Z., & Liu, F. (2012). A cross-layer protocol for reliable and efficient communication in wireless sensor networks. International Journal of Innovative Computing, Information and Control, 8(10), 7185.

    Google Scholar 

  24. Wu, G., Xia, F., Yao, L., Zhang, Y., & Zhu, Y. (2011). Journal of Software (1796217X) 6(12).

  25. Fang, Y., & McDonald, A. B. (2004). In IEEE SECON 2004. 2004 first annual IEEE communications society conference on sensor and ad hoc communications and networks, 2004 (pp. 255–263). doi: 10.1109/SAHCN.2004.1381924.

  26. Medagliani, P., Ferrari, G., Gay, V., & Leguay, J. (2013). Ad Hoc Networks 11(2), 712. doi: 10.1016/j.adhoc.2011.07.009. http://www.sciencedirect.com/science/article/pii/S1570870511001594. Special Issue on Cross-layer design in ad hoc and sensor networks.

  27. Isik, S., Donmez, M. Y., & Ersoy, C. (2011). Ad Hoc Networks, 9(3), 265. doi:10.1016/j.adhoc.2010.07.002. http://www.sciencedirect.com/science/article/pii/S1570870510000818.

  28. Eschenauer, L., & Gligor, V. D. (2002). In Proceedings of the 9th ACM conference on computer and communications security (pp. 41–47). ACM.

  29. Chen, W., McNeal, M., & Hong, L. (2010). In 2010 IEEE international conference on wireless information technology and systems (ICWITS) (pp. 1–4). doi: 10.1109/ICWITS.2010.5611952.

  30. Cordeschi, N., Polli, V., & Baccarelli, E. (2013). Communications, IEEE Transactions on, 61(12), 5176. doi:10.1109/TCOMM.2013.111113.120904.

  31. Mezouary, R. E., Loutfi, A., & Koutbi, M. E. (2014). In 2014 International conference on multimedia computing and systems (ICMCS) (pp. 843–848). doi: 10.1109/ICMCS.2014.6911279.

  32. Raisinghani, V. T., & Iyer, S. (2004). Computer Communications, 27(8), 720. doi:10.1016/j.comcom.2003.10.011.

  33. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Computer Networks, 52(12), 2292. doi: 10.1016/j.comnet.2008.04.002. http://www.sciencedirect.com/science/article/pii/S1389128608001254.

  34. Kawadia, V., & Kumar, P. R. (2005). Wireless Communications, IEEE, 12(1), 3. doi:10.1109/MWC.2005.1404568.

  35. Wang, Q., & Abu-Rgheff, M. A. (2003). In Wireless Communications and Networking (Vol. 2, pp. 1084–1089). IEEE.

  36. Su, W., & Lim, T. L. (2006). In Seventh ACIS international conference on software engineering, artificial intelligence, networking, and parallel/distributed computing, 2006. SNPD 2006 (pp. 278–284). IEEE. doi: 10.1109/SNPD-SAWN.2006.26.

  37. Merlin, C. J., & Heinzelman, W. B. (2006). In secondnd IEEE workshop on wireless mesh networks, 2006. WiMesh 2006 (pp. 103–105). IEEE. doi: 10.1109/WIMESH.2006.288606.

  38. Oldewurtel, F., Ansari, J., & Mahonen, P. (2008). In Second international conference on sensor technologies and applications, 2008. SENSORCOMM ’08 (pp. 435–443). IEEE. doi: 10.1109/SENSORCOMM.2008.10.

  39. Hefeida, M., Shen, M., Kshemkalyani, A., & Khokhar, A. (2012). In 2012 8th international wireless communications and mobile computing conference (IWCMC) (pp. 844–849). IEEE. doi: 10.1109/IWCMC.2012.6314314.

  40. Wang, J., Li, D., Xing, G., & Du, H. (2010). Mobile Computing, IEEE Transactions on, 9(11), 1622. doi:10.1109/TMC.2010.124.

  41. Suh, C., Ko, Y. B., & Son, D. M. (2006). In APWeb (pp. 410–419). New York: Springer.

  42. Kulkarni, S., Iyer, A., & Rosenberg, C. (2006). Networking, IEEE/ACM Transactions on, 14(4), 793. doi:10.1109/TNET.2006.880163.

  43. Cui, S., Madan, R., Goldsmith, A. J., & Lall, S. (2005). In 2005 IEEE international conference on communications, 2005. ICC 2005 (Vol. 2, pp. 725–729). IEEE. doi: 10.1109/ICC.2005.1494448.

  44. Dargie, W. (2010). In 2010 Proceedings of 19th international conference on computer communications and networks (ICCCN) (pp. 1–6). IEEE. doi: 10.1109/ICCCN.2010.5560062.

  45. Lin, D., & Li, S. (2009). In Fourth international conference on Frontier of computer science and technology, 2009. FCST ’09 (pp. 272–278). IEEE. doi: 10.1109/FCST.2009.50.

  46. Lin, C., He, Y. X., Peng, C., & Yang, L. T. (2007). In 21st International conference on advanced information networking and applications workshops, 2007, AINAW ’07 (Vol. 2, pp. 429–434). IEEE. doi: 10.1109/AINAW.2007.19.

  47. Song, L., & Hatzinakos, D. (2007). Networking, IEEE/ACM Transactions on, 15(1), 145. doi:10.1109/TNET.2006.890084.

  48. Kumar, R., & Reichert, F. (2011). In 2011 2nd international conference on wireless communication, vehicular technology, information theory and aerospace electronic systems technology (Wireless VITAE) (pp. 1–9). IEEE. doi: 10.1109/WIRELESSVITAE.2011.5940895.

  49. Vuran, M. C., & Akyildiz, I. (2010). Mobile Computing, IEEE Transactions on, 9(11), 1578. doi:10.1109/TMC.2010.125.

  50. Marina, M. K., & Das, S. R. (2001). In Ninth international conference on network protocols, 2001 (pp. 14–23). IEEE. doi: 10.1109/ICNP.2001.992756.

  51. Lee, S. J., & Gerla, M. (2001). In IEEE international conference on communications, 2001. ICC 2001 (Vol. 10, pp. 3201–3205). IEEE. doi: 10.1109/ICC.2001.937262.

  52. Kiepert, J., & Loo, S. M. (2012) In 2012 IEEE international systems conference (SysCon) (pp. 1–6). IEEE. doi: 10.1109/SysCon.2012.6189450.

  53. Rappaport, T. (2001). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  54. Han, S. Y., Abu-Ghazaleh, N. B., & Lee, D. (2015). Networking, IEEE/ACM Transactions on, PP(99), 1. doi:10.1109/TNET.2015.2431852.

  55. Baccour, N., Koubâa, A., Mottola, L., Niga, M. A. Z., Youssef, H., Boano, C. A., et al. (2012). ACM Transactions on Sensor Network, 8(4), 34:1. doi:10.1145/2240116.2240123.

  56. Ranjan, R., & Varma, S. (2012). Collision-free time synchronization for multi-hop wireless sensor networks. Journal of Computational Intelligence and Electronic Systems, 1(2), 200.

    Article  Google Scholar 

  57. Savvides, A., Garber, W. L., Moses, R. L., & Srivastava, M. B. (2005). Mobile Computing, IEEE Transactions on, 4(6), 567. doi:10.1109/TMC.2005.78.

  58. Moravek, P., Komosny, D., Simek, M., Girbau, D., & Lazaro, A. (2011). Energy analysis of received signal strength localization in wireless sensor networks. Radioengineering, 20(4), 937.

    Google Scholar 

  59. Niculescu, D., & Nath, B. (2001). In Global telecommunications conference, 2001. GLOBECOM’01 (Vol. 5, pp. 2926–2931). IEEE.

  60. Wang, S. S., Shih, K. P., & Chang, C. Y. (2007). Distributed direction-based localization in wireless sensor networks. Computer Communications, 30(6), 1424.

    Article  Google Scholar 

  61. Zhan, S., & Li, J. (2010). In 2010 2nd international conference on computer engineering and technology (ICCET) (Vol. 3, pp. V3–240–V3–244). doi: 10.1109/ICCET.2010.5485851.

  62. Sohraby, K., Minoli, D., & Znati, T. (2007). Wireless sensor networks: Technology, protocols, and applications. New York: Wiley.

    Book  Google Scholar 

  63. Omar, A. O., Kobbane, A., Sabir, E., Erradi, M., & Ben-Othman, J. (2014). In 2014 IEEE symposium on computers and communication (ISCC) (pp. 1–6). doi: 10.1109/ISCC.2014.6912648.

  64. Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Wireless Communications, IEEE Transactions on, 4(5), 2349. doi:10.1109/TWC.2005.853882.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Ranjan.

Appendix: Calculation of Optimum Hop Distance

Appendix: Calculation of Optimum Hop Distance

Consider that a node sends L bits of information when a event occurs and retransmits the information when there is an error. Suppose that, n is the maximum number of retransmissions, then the resultant number of bits transferred is given by [62],

$$\begin{aligned} L_{res}= L* \sum _{j=1}^{n+1}\left( j*PER^{j-1}*(1-PER)\right) + (n+1)*PER^{n+1} \end{aligned}$$
(1)

where PER is the Packet Error Rate and if BER is the Bit Error Rate, PER is given by

$$\begin{aligned} PER= 1-(1-BER)^L \end{aligned}$$
(2)

The circuit has three modes of operation. The on state is used for the transmission and receiving of information. The nodes are in sleep state when there is no data to send or receive. Transient state is the state between on state and sleep state. The total energy consumed in transmitting and receiving \(L_{res}\) bits of information to a hop, ignoring the power consumed in sleep state, is given by [63]

$$\begin{aligned} E_{hop}=\left( (1+\alpha )P_{t}+ P_{ct}+P_{cr}\right) T_{on}+P_{tr} T_{tr} \end{aligned}$$
(3)

where \(P_{tr}\) is the power consumed in transient state \(T_{tr}\). The \(P_{on}\), power consumed in on (\(T_{on}\)) state, consists of the power consumed by transmitted signal (\(P_{t}\)), the transmitting circuit (\(P_{ct}\)), the receiving circuit (\(P_{cr}\)), and power consumed by power amplifier (\(P_{pa}\)). \(\alpha = \frac{\zeta }{\eta }-1\) with \(\zeta \) peak-to-average power ratio (PAR) of the signal and \(\eta \) is the drain efficiency of the power amplifier. Assuming an N-th-power path-loss model at distance d (meters), the transmission power is expressed as [53]

$$\begin{aligned} P_{t}=P_{r} G_{1} M_{l} d^{N} \end{aligned}$$
(4)

In which \(M_{l}\)= link margin compensating the hardware process variations and noise and \(G_{1}\) = the gain factor at d = 1 m, Now, if the sink node is k hop away the source node, the total energy per bits is given by

$$\begin{aligned} E_{tot} =\sum _{i=1}^{k} \left( \left( (1+\alpha )P_{r} G_{1} M_{l} d^N_{i}+ P_{ct}+P_{cr}\right) T_{on}+P_{tr} T_{tr}\right) /L_{res} \end{aligned}$$
(5)

And, the received power strength is given in term of SNR (Signal to Noise Ratio) as [64]

$$\begin{aligned} P_{r}=\psi (N_{o} N_{f})/T_{s} \end{aligned}$$
(6)

where \(\psi \)=Received SNR, \(N_0/2\)= Power spectral density of the noise per dimension, \(N_f\)=receiver noise, \(T_s\)=symbol period

Applying Jension Inequality, the inter layer distance, \(d_{0}= d/k\) and differentiating it w. r. t. k and equating to 0, we get

$$\begin{aligned} d_{0}=\root N \of {\frac{\left( (P_{ct}+P_{cr})+P_{tr}\frac{T_{tr}}{T_{on}}\right) \eta T_{s}}{\zeta \psi N_{o} N_{f} G_{1} M_{l}(N-1)}} \end{aligned}$$
(7)

For M-ary Phase-shift Keying Modulation (MPSK) For MPSK, we use \(\eta = 0.35\) which is typical value of class A power amplifier. Also, PAR \(\zeta \) for MPSK is unity. Also, \(m = L_{res} T_s/T_{on}\) where the number of bits per symbol is defined as \(m= log_{2} M\) Considering B is the bandwidth in Hz of the signal, \(T_s\approx 1/B\)

$$\begin{aligned} d_{0}\approx \root N \of {\frac{0.35\left( (P_{ct}+P_{cr})+P_{tr}T_{tr}B\frac{log_{2}M}{L_{res}}\right) }{\psi N_{o} N_{f} G_{1} M_{l}B(N-1)}} \end{aligned}$$
(8)

M-ary Quadrature amplitude modulation (MQAM) For MQAM, \(\eta =0.35\), PAR= \(\zeta = \frac{3(\sqrt{M}-1)}{\sqrt{M}+1}\), \(m=\frac{L_{res}T_{s}}{T_{on}}\) and \(T_{s}\approx \frac{1}{B}\)

$$\begin{aligned} d_{0}\approx \root N \of {\frac{0.117\left( (P_{ct}+P_{cr})+P_{tr}T_{tr}B\frac{log_{2}M}{L_{res}}\right) (\sqrt{M}+1)}{\psi N_{o} N_{f} G_{1} M_{l}B(N-1)(\sqrt{M}-1)}} \end{aligned}$$
(9)

Multiple frequency-shift keying Modulation (MFSK) For MFSK we use \(\eta =0.75\) which is typical value of class B or higher power amplifier. Also, PAR \(\eta \) for MFSK is unity and \(T_{s}=\frac{M}{2B}\). Also \(\frac{2log_{2}M}{M}\cong \frac{L_{res}}{BT_{on}}\)

$$\begin{aligned} d_{0}\approx \root N \of {\frac{0.375\left( (P_{ct}+P_{cr})+2P_{tr}T_{tr}B\frac{log_{2}M}{ML_{res}}\right) (M)}{\psi N_{o} N_{f} G_{1} M_{l}B(N-1)}} \end{aligned}$$
(10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Varma, S. Challenges and Implementation on Cross Layer Design for Wireless Sensor Networks. Wireless Pers Commun 86, 1037–1060 (2016). https://doi.org/10.1007/s11277-015-2972-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2972-3

Keywords

Navigation