Skip to main content

Advertisement

Log in

Continuous Gesture Recognition using HLAC and Low-Dimensional Space

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This study proposes a continuous gesture recognition using information about features of motions obtained from continuous gesture images through higher order correlation feature coefficient and principal component analysis (PCA). The proposed method, first, separates two-dimensional silhouette gesture region from a continuous input image that includes a human body image. Information about 35 features are extracted using the higher order local auto correlation coefficient in the divided image and a low-dimensional gesture space is composed using PCA. The model feature value reflected in the gesture space is composed of symbols of certain conditions through clustering algorithm so as to be used as the input symbol of a hidden marker model, and a random input motion is recognized as the relevant gesture model with the highest probability value. The proposed method has less computation workload than the previous geometric feature-based method or appearance-based method and shows a high recognition rate with using the minimum information, so it is very suitable for the construction of a real-time system. In addition, the recognized gesture can be used input data of various applications like dynamic motion type game by mapping to an operating system. And the human motions can be used the objects of observation, such as smart home and behavior analysis in special spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weiser, M. (2001). The computer for the 21st century. Scientific America, 265(3), 66–76.

    Google Scholar 

  2. Pavlovic, V. I., Sharma, R., & Huang, T. S. (1997). Visual interpretation of hand gestures for human-computer interaction: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 677–695.

    Article  Google Scholar 

  3. Turk, M. (2004). Computer vision in the interface. Communications of the ACM, 47(1), 60–67.

    Article  Google Scholar 

  4. Gavrila, D. M., Davis, L. S. (1995). Towards 3D model based tracking and recognition of human movement: A multi-view approach. In Proceedings of the international workshop on face and gesture recognition (pp. 272–277).

  5. Haritaoglu, I., Harwood, D., Davis, L. S. (1998). W4: Who? When? Where? What? A real-time system for detecting and tracking people. In Proceedings of the international conference on face and gesture recognition (pp. 222–227).

  6. Haritaoglu, I., Harwood, D., Davis, L. S. (1998). Ghost: A human body part labeling system using silhouettes. In Proceedings of the international conference on pattern recognition (p. 77).

  7. Sherrah, J., Gong, S. (2000). VIGOUR: A system for tracking and recognition of multiple people and their activities. In Proceedings of the international conference on pattern recognition (p. 1179).

  8. Watanabe, T., Yachida, M. (1998). Real time recognition of gesture and gesture degree information using multi input image sequence. In Proceedings of the international conference on pattern recognition (p. 1855).

  9. Davis, J. W., Bobic, A. F. (1997). The representation and recognition of action using temporal templates. MIT Media lab technical report 402.

  10. Ishii, I., & Kubozono, M. (2006). Higher order autocorrelation vision chip. IEEE Transactions on Electron Devices, 53(8), 1797–1804.

    Article  Google Scholar 

  11. Murase, H., & Nayar, S. K. (1995). Visual learning and recognition 3-D object from appearance. International Journal of Computer Vision, 14(1), 5–24.

    Article  Google Scholar 

  12. Caelli, T., McCane, B. (2013). Components analysis of hidden Markov models in computer vision. In Proceedings of international conference image analysis and processing (pp. 510–515).

  13. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

    Article  Google Scholar 

  14. Kang, S. K., Chung, K. Y., & Lee, J. H. (2014). Real-time tracking and recognition systems for interactive telemedicine health services. Wireless Personal Communications, 79(4), 2611–2626.

    Article  Google Scholar 

  15. Kang, S. K., Chung, K. Y., & Lee, J. H. (2015). Ontology based inference system for adaptive object recognition. Multimedia Tools and Applications. doi:10.1007/s11042-013-1738-8.

    Google Scholar 

  16. Kang, S. K., Chung, K. Y., & Lee, J. H. (2014). development of head detection and tracking systems for visual surveillance. Personal and Ubiquitous Computing, 18(3), 515–522.

    Article  Google Scholar 

  17. Kim, J. C., Jung, H., Kim, S. H., & Chung, K. (2015). Slope based intelligent 3D disaster simulation using physics engine. Wireless Personal Communications. doi:10.1007/s11277-015-2788-1.

    Google Scholar 

  18. Jung, H., & Chung, K. Y. (2014). Mining based associative image filtering using harmonic mean. Cluster Computing, 17(3), 767–774.

    Article  Google Scholar 

  19. Chung, K. Y., & Lee, J. H. (2004). User preference mining through hybrid collaborative filtering and content-based filtering in recommendation system. IEICE Transaction on Information and Systems, E87-D(12), 2781–2790.

    Google Scholar 

  20. Chung, K., Boutaba, R., & Hariri, S. (2014). Recent trends in digital convergence information system. Wireless Personal Communications, 79(4), 2409–2413.

    Article  Google Scholar 

  21. Kim, S. H., & Chung, K. (2015). Emergency situation monitoring service using context motion tracking of chronic disease patients. Cluster Computing, 18(2), 747–759.

    Article  Google Scholar 

  22. Jung, H., & Chung, K. (2015). Knowledge based dietary nutrition recommendation for obesity management. Information Technology and Management. doi:10.1007/s10799-015-0218-4.

    Google Scholar 

  23. Jung, H., & Chung, K. (2015). Sequential pattern profiling based bio-detection for smart health service. Cluster Computing, 18(1), 209–219.

    Article  Google Scholar 

  24. Jung, H., & Chung, K. Y. (2014). Discovery of automotive design paradigm using relevance feedback. Personal and Ubiquitous Computing, 18(6), 1363–1372.

    Article  Google Scholar 

  25. Kim, J. H., & Ryu, J. K. (2013). Recent trends on high-performance computing and security. Cluster Computing, 16(2), 207–208.

    Article  MathSciNet  Google Scholar 

  26. Oh, S. Y., Ghose, S., Chung, K., & Han, J. S. (2014). Recent trends in convergence based smart healthcare service. International Journal of Technology and Health Care, 22(3), 303–307.

    Google Scholar 

  27. Chung, K., Kim, J. C., & Park, R. C. (2015). Knowledge based health service considering user convenience using hybrid Wi-Fi P2P. Information Technology and Management. doi:10.1007/s10799-015-0241-5.

    Google Scholar 

  28. Jung, H., Yoo, H., Lee, Y. H., & Chung, K. Y. (2015). Interactive pain nursing intervention system for smart health service. Multimedia Tools and Applications, 74(7), 2449–2466.

    Article  Google Scholar 

  29. Kim, J. H., & Chung, K. Y. (2014). Ontology-based healthcare context information model to implement ubiquitous environment. Multimedia Tools and Applications, 71(2), 873–888.

    Article  Google Scholar 

  30. Kim, S. H., & Chung, K. Y. (2014). 3D simulator for stability analysis of finite slope causing plane activity. Multimedia Tools and Applications, 68(2), 455–463.

    Article  Google Scholar 

  31. Oh, S. Y., Ghose, S., Jeong, Y. K., Ryu, J. K., & Han, J. (2015). Convergence security systems. International Journal of Computer Virology and Hacking, 11(3), 119–121.

    Article  Google Scholar 

  32. Han, J. (2015). Distributed hybrid P2P networking systems. Peer-to-Peer Networking and Applications, 8(4), 555–556.

    Article  Google Scholar 

  33. Kim, J., & Lee, J. (2015). Mobile, ubiquitous multimedia and digital convergence. Cluster Computing, 18(1), 243–245.

    Article  Google Scholar 

  34. Chung, K., & Oh, S. Y. (2015). Improvement of speech signal extraction method using detection filter of energy spectrum entropy. Cluster Computing, 18(2), 629–635.

    Article  Google Scholar 

  35. Davis, J. W. (1996). Appearance-based motion recognition of human actions. MIT Media Lab perceptual computing group technical report, No. 387.

  36. Ahad, M. A. R., Tan, J. K., Kim, H., & Ishikawa, S. (2012). Motion history image: Its variants and applications. Machine Vision and Applications, 23(2), 255–281.

    Article  Google Scholar 

Download references

Acknowledgments

This Study was conducted by research funds from Gwangju University in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myunga Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Chung, K. & Kang, M. Continuous Gesture Recognition using HLAC and Low-Dimensional Space. Wireless Pers Commun 86, 255–270 (2016). https://doi.org/10.1007/s11277-015-3068-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3068-9

Keywords

Navigation