Skip to main content
Log in

Power Allocation in Two-Way Relay Networks with MABC DF Protocol and No Instantaneous Channel State Information

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper we examine a two way relay network with multiple access broadcast, decode and forward protocol. A new power allocation scheme is proposed which is based on minimizing the outage probability. The outage probability is defined as the event in which the data rate of the different nodes lie outside the achievable rate region. For the first time, a closed-form mathematical expression is derived for the outage probability of such system, in the more general case than previous attempts. The only limiting constraint that is enforced on the problem is that the relay power is less than the power of the end main nodes (terminals). The obtained expression is then considered as the cost function of an optimization problem, in order to be minimized by allocating appropriate power to the nodes. The proposed scheme for power allocation needs no instantaneous channel coefficient estimation, but rather needs only statistical Channel State Information. The correctness of the obtained expression for the outage probability is verified by Monte Carlo simulations and the performance of the proposed scheme for power allocation is analyzed numerically. We have demonstrated that this technique can provide up to 1 dB gain in outage probability for average SNR values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  2. Andrews, J. G., Wan, C., & Heath, R. W. (2007). Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Wireless Communications, 14(6), 95–104. doi:10.1109/MWC.2007.4407232.

    Article  Google Scholar 

  3. Cheng-Xiang, W., Xuemin, H., Xiaohu, G., Xiang, C., Gong, Z., & Thompson, J. (2010). Cooperative MIMO channel models: A survey. IEEE Communications Magazine, 48(2), 80–87. doi:10.1109/MCOM.2010.5402668.

    Article  Google Scholar 

  4. Thinh Phu, D., Jin Soo, W., Iickho, S., & Yun Hee, K. (2013). Joint relay selection and power allocation for two-way relaying with physical layer network coding. IEEE Communications Letters, 17(2), 301–304. doi:10.1109/LCOMM.2013.122013.122134.

    Article  Google Scholar 

  5. Krikidis, I. (2010). Relay selection for two-way relay channels with MABC DF: A diversity perspective. IEEE Transactions on Vehicular Technology, 59(9), 4620–4628. doi:10.1109/TVT.2010.2069106.

    Article  Google Scholar 

  6. Kim, S. J., Devroye, N., Mitran, P., & Tarokh, V. (2008). Achievable rate regions for bi-directional relaying. arXiv preprint arXiv:0808.0954.

  7. Cover, T., & Gamal, A. E. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584. doi:10.1109/TIT.1979.1056084.

    Article  MathSciNet  MATH  Google Scholar 

  8. Laneman, J. N., Wornell, G. W., & Tse, D. N. C. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In 2001 IEEE International symposium on information theory, 2001 (p. 294). doi:10.1109/ISIT.2001.936157

  9. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080. doi:10.1109/TIT.2004.838089.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063. doi:10.1109/TIT.2005.853304.

    Article  MathSciNet  MATH  Google Scholar 

  11. Sang Joon, K., Devroye, N., Mitran, P., & Tarokh, V. (2008). Comparison of bi-directional relaying protocols. In Sarnoff symposium, 2008 IEEE, 2830 April 2008 (pp. 1–5). doi:10.1109/SARNOF.2008.4520117

  12. Wonjae, S., Namyoon, L., Jong Bu, L., & Changyong, S. (2009). An optimal transmit power allocation for the two-way relay channel using physical-layer network coding. In IEEE international conference on communications workshops, 2009. ICC workshops 2009. 14-18 June 2009 (pp. 1–6). doi:10.1109/ICCW.2009.5208047

  13. Pischella, M., & Le Ruyet, D. (2011). Optimal power allocation for the two-way relay channel with data rate fairness. IEEE Communications Letters, 15(9), 959–961. doi:10.1109/LCOMM.2011.070711.110789.

    Article  Google Scholar 

  14. Mingfeng, Z., Yajian, Z., Dongxiao, R., & Yixian, Y. (2010). A minimum power consumption scheme for two-way relay with physical-layer network coding. In IEEE International Conference on network infrastructure and digital content, 2010 2nd 2426 Sept. 2010 (pp. 704–708). doi:10.1109/ICNIDC.2010.5657874

  15. Sijia, L., & Longxiang, Y. (2013). Joint relay selection and power allocation for two-way decode-and-forward relay networks. In IET International Conference on information and communications technologies (IETICT 2013), 2729 April 2013 (pp. 435–439). doi:10.1049/cp.2013.0081

  16. Lihua, P., Yang, Z., Jiandong, L., Yanjun, M., & Jing, W. (2014). Power allocation and relay selection for two-way relaying systems by exploiting physical-layer network coding. IEEE Transactions on Vehicular Technology, 63(6), 2723–2730. doi:10.1109/TVT.2013.2294650.

    Article  Google Scholar 

  17. Qiang, L., See Ho, T., Pandharipande, A., & Yang, H. (2009). Adaptive two-way relaying and outage analysis. IEEE Transactions on Wireless Communications, 8(6), 3288–3299. doi:10.1109/TWC.2009.081213.

    Article  Google Scholar 

  18. Zhiyong, C., Hui, L., & Wenbo, W. (2010). A novel decoding-and-forward scheme with joint modulation for two-way relay channel. IEEE Communications Letters, 14(12), 1149–1151. doi:10.1109/LCOMM.2010.102610.101566.

    Article  Google Scholar 

  19. Zhiyong, C., Hui, L., & Wenbo, W. (2011). On the optimization of decode-and-forward schemes for two-way asymmetric relaying. In 2011 IEEE international conference on communications (ICC), 59 June 2011 (pp. 1–5). doi:10.1109/icc.2011.5962900

  20. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. New York: Tata McGraw-Hill Education.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the supports of Research Institute for ICT – ITRC and I. R. Iran Ministry of Science, Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Hasani.

Appendix: Determining the Probability Regions

Appendix: Determining the Probability Regions

In this section, we explore the probability regions for Γ i s in (15). They are regions in the X–Y plane (\(X = P_{a} \frac{{\left| {h_{a} } \right|^{2} }}{{\sigma^{2} }}\) and \(Y = P_{b} \frac{{\left| {h_{b} } \right|^{2} }}{{\sigma^{2} }}\) as explained in Sect. 3.1) where integrating the probability distribution function (in this article f X (x) f y (y)) over that region results in the Γ i .

1.1 Probability Region For Γ 1

We can simplify Γ 1 in (14) as

$$\varGamma_{1} = pr\left\{ {R_{1} \le X,R_{2} \le Y,\frac{X}{{\lambda_{3} }} < Y < \lambda_{4} X,R_{3} \le X + Y} \right\}.$$
(22)

As explained in Sect. 3, we assume that P r  ≤ P a P b and Consequently λ 3λ 4 ≤ 1. This results in Γ 1 = 0, since \(\lambda_{4} X \le \frac{X}{{\lambda_{3} }}\) and the condition \(\frac{X}{{\lambda_{3} }} < Y < \lambda_{4} X\) in (22) will not hold.

1.2 Probability Region For Γ 2

Considering λ 3, λ 4 ≤ 1, Γ 2 in (14) can be simplified as

$$\begin{aligned} \varGamma_{2} & = pr\left\{ {\hbox{max} \left( {R_{1} ,\frac{{R_{2} }}{{\lambda_{4} }}} \right) \le X \le \hbox{min} \left( {\lambda_{3} Y,\frac{Y}{{\lambda_{4} }}} \right),R_{3} \le X + Y} \right\} \\ & = pr\left\{ {\hbox{max} \left( {R_{1} ,\frac{{R_{2} }}{{\lambda_{4} }}} \right) \le X \le \lambda_{3} Y,R_{3} \le X + Y} \right\}. \\ \end{aligned}$$
(23)

S 2 (the probability region for Γ 2) is either the shaded region in Fig. 12a \(\left( \hbox {if} \, \hbox{max} \left( {R_{1} ,\frac{{R_{2} }}{{\lambda_{4} }}} \right) < \frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} \right)\) or Fig. 12b \(\left( \hbox{if} \, \hbox{max} \left( {R_{1} ,\frac{{R_{2} }}{{\lambda_{4} }}} \right) > \frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} \right)\).

Fig. 12
figure 12

The probability region for Γ 2; a \(\hbox{max} \left( {R_{1} ,\frac{{R_{2} }}{{\lambda_{4} }}} \right) < \frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3}\); b \(\hbox{max} \left( {R_{1} ,\frac{{R_{2} }}{{\lambda_{4} }}} \right) > \frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3}\)

1.3 Probability Region For Γ 3

Γ 3 in (14) can be reformulated as

$$\begin{aligned} \varGamma_{3} & = pr\left\{ {\hbox{max} \left( {R_{2} ,\frac{{R_{1} }}{{\lambda_{3} }}} \right) \le Y \le \hbox{min} \left( {\lambda_{4} X,\frac{X}{{\lambda_{3} }}} \right),R_{3} \le X + Y} \right\} \\ & = pr\left\{ {\hbox{max} \left( {R_{2} ,\frac{{R_{1} }}{{\lambda_{3} }}} \right) \le Y \le \lambda_{4} X,R_{3} \le X + Y} \right\}; \\ \end{aligned}$$
(24)

where the constraints λ 3, λ 4 ≤ 1 have been used in the second equality. S 3, the probability region for Γ 3 has been depicted in Fig. 13 for both \(\frac{{R_{1} }}{{\lambda_{3} }} < \frac{{\lambda_{4} }}{{1 + \lambda_{4} }}R_{3}\) and \(\frac{{R_{1} }}{{\lambda_{3} }} > \frac{{\lambda_{4} }}{{1 + \lambda_{4} }}R_{3}\).

Fig. 13
figure 13

The probability region for Γ 3; a \(\frac{{R_{1} }}{{\lambda_{3} }} < \frac{{\lambda_{4} }}{{1 + \lambda_{4} }}R_{3}\); b \(\frac{{R_{1} }}{{\lambda_{3} }} > \frac{{\lambda_{4} }}{{1 + \lambda_{4} }}R_{3}\)

1.4 Probability Region For Γ 4

Simplifying Γ 4 in (14) results in

$$\varGamma_{4} = pr\left\{ {\frac{{R_{1} }}{{\lambda_{3} }} \le Y,\frac{{R_{2} }}{{\lambda_{4} }} \le X,\lambda_{4} X < Y < \frac{X}{{\lambda_{3} }},R_{3} \le X + Y} \right\}.$$
(25)

Depending on the quantities \(\frac{{R_{1} }}{{\lambda_{3} }}\) and \(\frac{{R_{2} }}{{\lambda_{4} }}\), different 10 types of probability region for Γ 4 will arise which are depicted in Fig. 14.

Fig. 14
figure 14

The probability region for Γ 4; a \(\frac{{R_{2} }}{{\lambda_{4} }} < \frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} ,\frac{{R_{1} }}{{\lambda_{3} }} \le \frac{{\lambda_{4} }}{{1 + \lambda_{4} }}R_{3}\); b \(\frac{{R_{2} }}{{\lambda_{4} }} \le \frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} ,\frac{{\lambda_{4} }}{{1 + \lambda_{4} }}R_{3} < \frac{{R_{1} }}{{\lambda_{3} }} \le \frac{1}{{1 + \lambda_{3} }}R_{3}\); c \(\frac{{R_{2} }}{{\lambda_{4} }} \le \frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} ,\frac{1}{{1 + \lambda_{3} }}R_{3} < \frac{{R_{1} }}{{\lambda_{3} }}\); d \(\frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} < \frac{{R_{2} }}{{\lambda_{4} }} \le \frac{1}{{1 + \lambda_{4} }}R_{3} ,\frac{{R_{1} }}{{\lambda_{3} }} \le \frac{{\lambda_{4} }}{{1 + \lambda_{4} }}R_{3}\); e \(\frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} < \frac{{R_{2} }}{{\lambda_{4} }} \le \frac{1}{{1 + \lambda_{4} }}R_{3} ,\frac{{\lambda_{4} }}{{1 + \lambda_{4} }}R_{3} < \frac{{R_{1} }}{{\lambda_{3} }} \le R_{3} - \frac{{R_{2} }}{{\lambda_{4} }}\); f \(\frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} < \frac{{R_{2} }}{{\lambda_{4} }} \le \frac{1}{{1 + \lambda_{4} }}R_{3} ,R_{3} - \frac{{R_{2} }}{{\lambda_{4} }} < \frac{{R_{1} }}{{\lambda_{3} }} \le \frac{1}{{\lambda_{3} \lambda_{4} }}R_{2}\); g \(\frac{{\lambda_{3} }}{{1 + \lambda_{3} }}R_{3} < \frac{{R_{2} }}{{\lambda_{4} }} \le \frac{1}{{1 + \lambda_{4} }}R_{3} ,\frac{1}{{\lambda_{3} \lambda_{4} }}R_{2} < \frac{{R_{1} }}{{\lambda_{3} }}\); h \(\frac{1}{{1 + \lambda_{4} }}R_{3} < \frac{{R_{2} }}{{\lambda_{4} }},\frac{{R_{1} }}{{\lambda_{3} }} \le R_{2}\); i \(\frac{1}{{1 + \lambda_{4} }}R_{3} < \frac{{R_{2} }}{{\lambda_{4} }},R_{2} < \frac{{R_{1} }}{{\lambda_{3} }} \le \frac{1}{{\lambda_{3} \lambda_{4} }}R_{2}\); j \(\frac{1}{{1 + \lambda_{4} }}R_{3} < \frac{{R_{2} }}{{\lambda_{4} }},\frac{1}{{\lambda_{3} \lambda_{4} }}R_{2} < \frac{{R_{1} }}{{\lambda_{3} }}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasani, A., Vakili, V.T. Power Allocation in Two-Way Relay Networks with MABC DF Protocol and No Instantaneous Channel State Information. Wireless Pers Commun 87, 1415–1433 (2016). https://doi.org/10.1007/s11277-015-3075-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3075-x

Keywords

Navigation