Skip to main content
Log in

A New Method of Generating Spectral Nulls at the Transmitter in Cognitive Radio

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In cognitive radio (CR), cognitive users can sense the wholes and white spectrum and generate spectrum notch in the spectrum bands occupied by primary users (PUs) or interference. Thus, the key technology in CR is to control the spectrum shape of the transmitted signal to avoid PUs and interference. In this paper, a new method of shaping the transmitted signal spectrum envelope by spectrum-spread technology is proposed. The proposed method can generate spectral nulls at the band of PUs or interference in the CR environment. Compared to the existing methods generating spectrum nulls, the proposed method can effectively generate spectral nulls to avoid interference or PUs only by designing the pseudo-random code waveform (PCW) based on direct sequence spread spectrum technology. The condition of electromagnetic spectrum occupation is detected by CR technology so as to construct an ideal spectrum template. Based on the spectrum template, we study the design of the baseband waveform. The bit error rate (BER) performance of the proposed method in different sorts of interferences, and the relation between the BER and the spectrum overlap degree (SOD) are derived, of which the concept of SOD is proposed. The expression between BER and SOD shows that BER is proportional to SOD, which shows the criterion to design the PCW. The signal spectrograms in the receiver in presence of tone jamming and BPSK jamming indicate that the proposed scheme can effectively generate spectrum nulls in the frequency band occupied by PUs or interference. Furthermore, the BER versus SNR and BER versus SIR simulation results both in presence of tone jamming and BPSK jamming show that the proposed method has a significantly improved the BER performance by generating spectral nulls to avoid PUs or interferences. Simulation results are carried out to corroborate our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Lin, Y., Liu, K., & Hsieh, H. (2013). On using interference-aware spectrum sensing for DSA in CR networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.

    Article  Google Scholar 

  3. Zhang, S., Dong, X., Bao, Z., & Zhang, H. (2013). Adaptive spectrum sensing algorithm in cognitive ultra-wideband systems. Wireless Personal Communications, 68, 789–810.

    Article  Google Scholar 

  4. Mir, U., Merghem-Boulahia, L., Esseghir, M., & Gaïti, D. (2014). A multiagent based scheme for unlicensed spectrum access in CR networks. Wireless Personal Communications, 79, 1765–1786.

    Article  Google Scholar 

  5. Backens, J., Xin, C., Song, M., & Chen, C. (2015). DSCA: Dynamic spectrum co-access between the primary users and the secondary users. IEEE Transactions on Vehicular Technology, 64(2), 668–676.

    Article  Google Scholar 

  6. Datla, D., Rajbanshi, R., Wyglinski, A., & Minden, G. (2009). An adaptive spectrum Sensing architecture for dynamic spectrum access networks. IEEE Transactions on Wireless Communications, 8(8), 4211–4219.

    Article  Google Scholar 

  7. Pandey, G. P., Kanaujia, B. K., Gupta, S. K., & Gautam, A. K. (2015). A novel C shape antenna with switchable wideband frequency notch. Wireless Personal Communications, 80, 471–482.

    Article  Google Scholar 

  8. Badamchi, B., Nourinia, J., Ghobadi, C., & Shahmirzadi, A. (2014). Design of compact reconfigurable ultra-wideband slot antenna with switchable single/dual band notch functions. IET Microwaves, Antennas and Propagation, 8(8), 541–548.

    Article  Google Scholar 

  9. Naser-Moghadasi, M., Sadeghzadeh, R. A., Asadpor, L., Soltani, S., & Virdee, B. S. (2010). Improved band-notch technique for ultra-wideband antenna. IET Microwaves, Antennas and Propagation, 4(11), 1886–1891.

    Article  Google Scholar 

  10. Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Radio Communications, 42(3), S8–S14.

    Article  Google Scholar 

  11. Zhou, X., Li, G., & Sun, G. (2013). Multiuser spectral precoding for OFDM-based cognitive radio systems. IEEE Journal on Selected Areas in Communications, 21(3), 345–352.

    Article  Google Scholar 

  12. Kumar, R., & Tyagi, A. (2014). Antiphase tones across transmitting antennas: A spectrum sharing technique for cognitive CO-STFC MB-OFDM UWB system. Wireless Personal Communications, 79, 437–451.

    Article  Google Scholar 

  13. Kumar, R., & Tyagi, A. (2015). Extended subcarrier weighting for sidelobe suppression in OFDM based cognitive radio. Wireless Personal Communications,. doi:10.1007/s11277-015-2623-8.

    Google Scholar 

  14. Xiong, H., Zhang, W., Du, Z., He, B., & Yuan, D. (2013). Front-end narrowband interference mitigation for DS-UWB receiver. IEEE Transactions on Wireless Communications, 12(9), 4328–4337.

    Article  Google Scholar 

  15. Mirzaee, M., Noghanian, S., & Virdee, B. S. (2014). High selectivity UWB bandpass filter with controllable bandwidth of dual notch bands. Electronics Letters, 50(19), 1358–1359.

    Article  Google Scholar 

  16. Shao, H., & Beaulieu, N. (2011). Direct sequence and time-hopping sequence designs for narrowband interference mitigation in impulse radio UWB systems. IEEE Transactions on Communications, 59(7), 1957–1965.

    Article  Google Scholar 

  17. Andren, C. F., Lucas, L. V., & Schachte, J. A. (1991). Low probability of intercept communication system. US Patent 5029184, July 1991.

  18. Chakravarthy, V., Nunez, A., & Stephens, J. (2005). TDCS, OFDM, and MC-CDMA: A brief tutorial. IEEE Radio, Communications, 43(9), S11–S16.

    Article  Google Scholar 

  19. Budiarjo, I., Nikookar, H., & Ligthart, L. (2008). Cognitive radio modulation techniques. IEEE Signal Processing Magazine, 25(6), 24–34.

    Article  Google Scholar 

  20. Chakravarthy, V., Li, X., Wu, Z. Q., et al. (2009). Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency—Part I: theoretical framework and analysis in AWGN channel. IEEE Transactions on Communications, 57(12), 3794–3804.

    Article  Google Scholar 

  21. Lin, R., Bi, G., Liu, X., & Guan, Y. L. (2014). On the modulation and signalling design for a transform domain communication system. IET Communications, 8(16), 2909–2916.

    Article  Google Scholar 

  22. Hu, S., Guan, Y. L., Bi, G., & Li, S. (2012). Cluster-based transform domain communication systems for high spectrum efficiency. IET Communications, 6(16), 2734–2739.

    Article  Google Scholar 

  23. Bernard, S. (2001). Digital communications: Fundamental and applications (2nd ed., p. 19). Upper Saddle River: Prentice Hall PTR.

    Google Scholar 

  24. Schilling, D. L., Milstein, L. B., Pickholtz, R. L., et al. (1980). Optimization of the processing gain of an M-ary direct sequence spread spectrum communication system. IEEE Transactions on Communications, COM, 28(8), 1389–1398.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61271263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwei Li.

Appendices

Appendix 1

$$S\left( t \right){ = }a_{i} \int_{0}^{T} {PN^{2} \left( t \right)dt} + a_{i} \int_{0}^{T} {PN^{2} \left( t \right)\cos 2\omega_{0} tdt}$$
(24)

where

$$\begin{aligned}& \int_{0}^{T} {PN^{2} \left( t \right)\cos 2\omega_{0} tdt} = \int_{ - \infty }^{\infty } {PN^{2} \left( t \right)\cos 2\omega_{0} tdt} \hfill \\ &= \int_{ - \infty }^{\infty } {\left[ {\frac{1}{2\pi }\int_{ - \infty }^{\infty } {\left( {\frac{1}{2\pi }PN\left( {j\omega } \right) \times PN\left( {j\omega } \right)} \right)e^{j\omega t} d\omega } } \right]\cos 2\omega_{0} tdt} \hfill \\& = \frac{1}{4\pi }\int_{ - \infty }^{\infty } {\left( {PN\left( {j\omega } \right) \times PN\left( {j\omega } \right)} \right)d\omega } \cdot \frac{1}{2\pi }\int_{ - \infty }^{\infty } {\left( {e^{{j\left( {\omega + 2\omega_{0} } \right)t}} + e^{{j\left( {\omega - 2\omega_{0} } \right)t}} } \right)d\omega } \hfill \\ &= \frac{1}{4\pi }\int_{ - \infty }^{\infty } {\left( {PN\left( {j\omega } \right) \times PN\left( {j\omega } \right)} \right)\left[ {\delta \left( {\omega + 2\omega_{0} } \right) + \delta \left( {\omega - 2\omega_{0} } \right)} \right]d\omega } \hfill \\ &= \frac{1}{4\pi }\left[ {\left. {PN\left( {j\omega } \right) \times PN\left( {j\omega } \right)} \right|_{{\omega = 2\omega_{0} }} + \left. {PN\left( {j\omega } \right) \times PN\left( {j\omega } \right)} \right|_{{\omega = - 2\omega_{0} }} } \right] \hfill \\ &\approx 0 \hfill \\ \end{aligned}$$
(25)

Therefore we can obtain that

$$S\left( t \right) = a_{i} \int_{0}^{T} {PN^{2} \left( t \right)dt}$$
(26)

Appendix 2

$$E\left[ {N\left( t \right)} \right] = 2\int_{0}^{T} {E\left[ {n\left( t \right)} \right]} E\left[ {PN\left( t \right)\cos \omega_{0} t} \right]dt = 0$$
(27)
$$D\left[ {N\left( t \right)} \right] = E\left[ {N^{2} \left( t \right)} \right]{ - }E^{2} \left[ {N\left( t \right)} \right]{ = }E\left[ {N^{2} \left( t \right)} \right]$$
(28)
$$\begin{aligned} N^{2} \left( t \right) = 4\int_{0}^{T} {n\left( t \right)} PN\left( t \right)\cos \omega_{0} tdt\int_{0}^{\tau } {n\left( \tau \right)} PN\left( \tau \right)\cos \omega_{0} \tau d\tau \hfill \\ = 4\int_{0}^{T} {\int_{0}^{\tau } {n\left( t \right)n\left( \tau \right)} PN\left( t \right)PN\left( \tau \right)\cos \omega_{0} t\cos \omega_{0} \tau dtd\tau } \hfill \\ \end{aligned}$$
(29)
$$\begin{aligned}& E\left[ {N^{2} \left( t \right)} \right] = \hfill \\ &4\int_{0}^{T} {\int_{0}^{\tau } {E\left[ {n\left( t \right)n\left( \tau \right)} \right]} PN\left( t \right)PN\left( \tau \right)\cos \omega_{0} t\cos \omega_{0} \tau dtd\tau } \hfill \\ &= 4\int_{0}^{T} {\int_{0}^{\tau } {\frac{{n_{0} }}{2}\delta \left( {t - \tau } \right)} PN\left( t \right)PN\left( \tau \right)\cos \omega_{0} t\cos \omega_{0} \tau dtd\tau } \hfill \\& = 2n_{0} \int_{0}^{T} {PN^{2} \left( t \right)\cos^{2} \omega_{0} tdt} \hfill \\ &= n_{0} \int_{0}^{T} {PN^{2} \left( t \right)dt} + n_{0} \int_{0}^{T} {PN^{2} \left( t \right)\cos 2\omega_{0} tdt} \hfill \\ &= n_{0} \int_{0}^{T} {PN^{2} \left( t \right)dt} \hfill \\ \end{aligned}$$
(30)

Appendix 3

When there is interference in the communication system, we can obtain thatr(t) ∼ N(I(t) − AE PN n 0 E PN ) for the case where 0 is sent and r(t) ∼ N(I(t) + AE PN n 0 E PN ) for the case where 1 is sent. We can obtain that

$$\begin{aligned} P_{e} = \frac{1}{2}\left( {\phi \left( {\frac{I\left( t \right)}{{\sqrt {n_{0} E_{PN} } }} - \sqrt {\frac{{A^{2} E_{PN} }}{{n_{0} }}} } \right) + \phi \left( { - \frac{I\left( t \right)}{{\sqrt {n_{0} E_{PN} } }} - \sqrt {\frac{{A^{2} E_{PN} }}{{n_{0} }}} } \right)} \right) \hfill \\ = \frac{1}{2}\left( {\phi \left( {\frac{I\left( t \right)}{{\sqrt {2n_{0} E_{b} } }} - \sqrt {\frac{{2E_{b} }}{{n_{0} }}} } \right) + \phi \left( { - \frac{I\left( t \right)}{{\sqrt {2n_{0} E_{b} } }} - \sqrt {\frac{{2E_{b} }}{{n_{0} }}} } \right)} \right) \hfill \\ = \frac{1}{2}\left( {\phi \left( {\sqrt {\frac{{2E_{b} }}{{n_{0} }}} \left( {\frac{I\left( t \right)}{{2E_{b} }} - 1} \right)} \right) + \phi \left( {\sqrt {\frac{{2E_{b} }}{{n_{0} }}} \left( { - \frac{I\left( t \right)}{{2E_{b} }} - 1} \right)} \right)} \right) \hfill \\ \end{aligned}$$
(31)

Appendix 4

$$\begin{aligned} \frac{I\left( t \right)}{\alpha } = 2\int_{ - \infty }^{\infty } {PN\left( t \right)\cos \left( {\omega_{I} t + \theta } \right)\cos \omega_{0} tdt} \hfill \\ = \int_{ - \infty }^{\infty } {PN\left( t \right)\cos \left( {\left( {\omega_{I} - \omega_{0} } \right)t + \theta } \right)dt} + \int_{ - \infty }^{\infty } {PN\left( t \right)\cos \left( {\left( {\omega_{I} + \omega_{0} } \right)t + \theta } \right)dt} \hfill \\ \end{aligned}$$
(32)

Let Δω = ω I  − ω 0, then

$$\begin{aligned} &\int_{ - \infty }^{\infty } {PN\left( t \right)\cos \left( {\left( {\omega_{I} - \omega_{0} } \right)t + \theta } \right)dt} \hfill \\ &= \int_{ - \infty }^{\infty } {PN\left( t \right)\cos \left( {\varDelta \omega t + \theta } \right)dt} \hfill \\ &= \frac{1}{2}\int_{ - \infty }^{\infty } {\left[ {\frac{1}{2\pi }\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)e^{j\omega t} d\omega } } \right]\left( {e^{j\theta } e^{j\varDelta \omega t} + e^{ - j\theta } e^{ - j\varDelta \omega t} } \right)dt} \hfill \\ &= \frac{1}{2}\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)d\omega } \cdot \frac{1}{2\pi }\int_{ - \infty }^{\infty } {\left( {e^{j\theta } e^{{j\left( {\omega + \varDelta \omega } \right)t}} + e^{ - j\theta } e^{{j\left( {\omega - \varDelta \omega } \right)t}} } \right)dt} \hfill \\ &= \frac{1}{2}\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)\left[ {e^{j\theta } \delta \left( {\omega + \varDelta \omega } \right) + e^{ - j\theta } \delta \left( {\omega - \varDelta \omega } \right)} \right]d\omega } \hfill \\ &= \frac{1}{2}\left[ {e^{ - j\theta } PN\left( {j\varDelta \omega } \right) + e^{j\theta } PN\left( { - j\varDelta \omega } \right)} \right] \hfill \\ &= {\text{Real}}\left\{ {e^{ - j\theta } PN\left( {j\varDelta \omega } \right)} \right\} \hfill \\ \end{aligned}$$
(33)

Similarly we can obtain that

$$\int_{ - \infty }^{\infty } {PN\left( t \right)\cos \left( {\left( {\omega_{I} { + }\omega_{0} } \right)t + \theta } \right)dt} = \text{Re} al\left\{ {e^{ - j\theta } PN\left( {j\left( {\omega_{I} { + }\omega_{0} } \right)} \right)} \right\} \approx 0$$
(34)

Therefore, we can obtain that

$$I\left( t \right) = \alpha \cdot Real\left\{ {e^{ - j\theta } PN\left( {j\varDelta \omega } \right)} \right\}$$
(35)

Appendix 5

$$\begin{aligned} I\left( t \right) = 2\int_{ - \infty }^{\infty } {PN\left( t \right)i\left( t \right)\cos \omega_{0} tdt} \hfill \\ = \int_{ - \infty }^{\infty } {\left( {\frac{1}{2\pi }\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)e^{j\omega t} d\omega_{1} } } \right)\left( {\frac{1}{2\pi }\int_{ - \infty }^{\infty } {I\left( {j\omega_{I} } \right)e^{{j\omega_{I} t}} d\omega_{I} } } \right)\left( {e^{{j\omega_{0} t}} + e^{{ - j\omega_{0} t}} } \right)dt} \hfill \\ = \frac{1}{2\pi }\int_{ - \infty }^{\infty } {\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)} I\left( {j\omega_{I} } \right)d\omega d\omega_{I} } \cdot \frac{1}{2\pi }\int_{ - \infty }^{\infty } {\left( {e^{{j\left( {\omega + \omega_{I} + \omega_{0} } \right)t}} + e^{{ - j\left( {\omega + \omega_{I} - \omega_{0} } \right)t}} } \right)dt} \hfill \\ = \frac{1}{2\pi }\int_{ - \infty }^{\infty } {\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)} I\left( {j\omega_{I} } \right)d\omega d\omega_{I} } \left[ {\delta \left( {\omega + \omega_{I} + \omega_{0} } \right) + \delta \left( {\omega + \omega_{I} - \omega_{0} } \right)} \right] \hfill \\ = \frac{1}{2\pi }\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)d\omega } \int_{ - \infty }^{\infty } {I\left( {j\omega_{I} } \right)\left[ {\delta \left( {\omega + \omega_{I} + \omega_{0} } \right) + \delta \left( {\omega + \omega_{I} - \omega_{0} } \right)} \right]d\omega_{I} } \hfill \\ = \frac{1}{2\pi }\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)\left[ {I\left( { - j\left( {\omega + \omega_{0} } \right)} \right) + I\left( { - j\left( {\omega - \omega_{0} } \right)} \right)} \right]d\omega } \hfill \\ = \frac{1}{2\pi }\int_{ - \infty }^{\infty } {PN\left( {j\omega } \right)\left[ {I\left( {j\left( {\omega + \omega_{0} } \right)} \right) + I\left( {j\left( {\omega - \omega_{0} } \right)} \right)} \right]^{ * } d\omega } \hfill \\ \end{aligned}$$
(36)

where denotes complex conjugate.

Appendix 6

When we analyze I(t), it shows the correlation value of PN(t) cos ω 0 t and i(t). For real signal i(t), when i(t) = PN(t) cos ω 0 t, I(t) obtains the maximum value

$$I_{\hbox{max} } \left( t \right) = 2\int_{T} {PN^{2} \left( t \right)\cos^{2} \omega_{0} tdt} = \int_{T} {PN^{2} \left( t \right)dt} = E_{PN} = 2E_{b}$$
(37)

Then \(\frac{I\left( t \right)}{{2E_{b} }}\) reaches the maximum value 1. When \(i\left( t \right) = { - }PN\left( t \right)\cos \omega_{0} t\), I(t) obtains the minimum value and

$$I_{\hbox{min} } \left( t \right) = - 2\int_{T} {PN^{2} \left( t \right)\cos^{2} \omega_{0} tdt} = - E_{PN} = - 2E_{b}$$
(38)

Then \(\frac{I\left( t \right)}{{2E_{b} }}\) attains the minimum value −1.

Appendix 7

$$\begin{aligned} P_{e} = \frac{1}{2}\left( {\phi \left( {\sqrt {\frac{{2E_{b} }}{{n_{0} }}} \left( {SOD - 1} \right)} \right) + \phi \left( {\sqrt {\frac{{2E_{b} }}{{n_{0} }}} \left( { - SOD - 1} \right)} \right)} \right) \hfill \\ { = }\frac{1}{4}erfc\left( {\sqrt {{{E_{b} } \mathord{\left/ {\vphantom {{E_{b} } {n_{0} }}} \right. \kern-0pt} {n_{0} }}} \left( {1 - SOD} \right)} \right) + \frac{1}{4}erfc\left( {\sqrt {{{E_{b} } \mathord{\left/ {\vphantom {{E_{b} } {n_{0} }}} \right. \kern-0pt} {n_{0} }}} \left( {1 + SOD} \right)} \right) \hfill \\ \end{aligned}$$
(39)

where \(erfc\left( x \right) = \frac{1}{\sqrt 2 }\int_{x}^{\infty } {\exp \left( { - {\text{z}}^{2} } \right){\text{dz}}}\).

For simplify and without loss of generality, set k equal to \(\sqrt {{{E_{b} } \mathord{\left/ {\vphantom {{E_{b} } {n_{0} }}} \right. \kern-0pt} {n_{0} }}}\) and (39) can be rewritten as

$$\begin{aligned} P_{e} = erfc\left( {k\left( {1 - SOD} \right)} \right) + erfc\left( {k\left( {1 + SOD} \right)} \right) \hfill \\ = 1 - erf\left( {k\left( {1 - SOD} \right)} \right) - erf\left( {k\left( {1 + SOD} \right)} \right) \hfill \\ \end{aligned}$$
(40)

Take the derivative of (40) we can achieve that

$$\begin{aligned} \frac{{{\text{d}}P_{e} }}{{{\text{d}}SOD}} = \frac{2k}{\sqrt \pi }e^{{ - k^{2} \left( {1 - SOD} \right)^{2} }} - \frac{2k}{\sqrt \pi }e^{{ - k^{2} \left( {1 + SOD} \right)^{2} }} \hfill \\ = \frac{2k}{\sqrt \pi }\left[ {e^{{ - k^{2} \left( {1 - SOD} \right)^{2} }} - e^{{ - k^{2} \left( {1 + SOD} \right)^{2} }} } \right] \hfill \\ \end{aligned}$$
(41)

(41) shows that when SOD > 0, \(\frac{{{\text{d}}P_{e} }}{{{\text{d}}SOD}} > 0\) ;when SOD = 0, \(\frac{{{\text{d}}P_{e} }}{{{\text{d}}SOD}} = 0\) ;when SOD ≤ 0, \(\frac{{{\text{d}}P_{e} }}{{{\text{d}}SOD}} < 0\). Thus, P e can get the minimal value when SOD = 0.P e is proportional to SOD when SOD > 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, Q., Gao, F. et al. A New Method of Generating Spectral Nulls at the Transmitter in Cognitive Radio. Wireless Pers Commun 88, 819–837 (2016). https://doi.org/10.1007/s11277-016-3207-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3207-y

Keywords

Navigation