Skip to main content

Advertisement

Log in

Enhancing Reliability of IEEE 802.15.6 Wireless Body Area Networks in Scheduled Access Mode and Error Prone Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates reliability of wireless body area networks based on the IEEE 802.15.6 standard, for the scheduled access mode in an error prone channel. In scheduled access mode, during a time slot that is allocated for communication between a sensor node and the hub, the frame transmission fails if the link is in the deep fade state. To improve reliability of the network, we propose an efficient scheme for packet retransmission. The proposed scheme relies on allocation of spare slots for packet retransmissions in each superframe. We then present analytical models to find the energy efficiency and reliability of the network under the proposed retransmission scheme. Through analytical and simulation results, we establish that the proposed retransmission scheme can significantly improve the reliability of the network in the scheduled access mode, without causing degradation of energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. Communications Magazine, IEEE, 47(12), 84–93.

    Article  Google Scholar 

  2. Boulis, A., Smith, D., Miniutti, D., Libman, L., & Tselishchev, Y. (2012). Challenges in body area networks for healthcare: The MAC. Communications Magazine, IEEE, 50(5), 100–106.

    Article  Google Scholar 

  3. IEEE Standard for Local and metropolitan area networks Part 15.6: Wireless Body Area Networks, 29 Feb. 2012.

  4. Miniutti, D., Smith, D., Hanlen, L., Zhang, A., Boulis, A., Rodda, D., & Gilbert, B. (2010) Sleeping channel measurements for body area networks, IEEE 802.15-09-0778-01-0006.

  5. Kailas, A. (2011). Power allocation strategies to minimize energy consumption in wireless body area networks. In Proceedings of IEEE conference on Engineering in Medicine and Biology Society, pp. 2204–2207.

  6. Huang, X., Shan, H., Shen, X. (2011). On energy efficiency of cooperative communications in wireless body area networks. In Proceedings of IEEE conference on wireless communications and networking conference, pp. 1097–1101.

  7. Domingo, M. C. (2011). Packet size optimization for improving the energy efficiency in body sensor networks. ETRI Journal, 33(3), 299–309.

    Article  Google Scholar 

  8. Li, Y., Qi, X., Ren, Z., Zhou, G., Xiao, D., & Deng, S. (2011). Energy modeling and optimization through joint packet size analysis of BSN and WiFi networks. In Proceedings of IEEE conference on performance computing and communications, pp. 1–8.

  9. Deepak, K.S., & Babu, A.V. (2012). Packet size optimization for energy efficient cooperative wireless body area networks. In Proceedings of IEEE India conference (INDICON), pp. 736–741.

  10. Omeni, O., Wong, A., Burdett, A. J., & Toumazou, C. (2008). Energy efficient medium access protocol for wireless medical body area sensor networks. IEEE Transactions on Biomedical Circuits and Systems, 2(4), 251–259.

    Article  Google Scholar 

  11. Fang, G., & Dutkiewicz, E. (2009). BodyMAC: Energy efficient TDMA-based MAC protocol for wireless body area networks. In Proceedings of IEEE conference on Communications and Information Technology, ISCIT, pp. 1455–1459.

  12. Li, H., & Tan, J. (2010). Heartbeat-driven medium-access control for body sensor networks. IEEE Transactions on Information Technology in Biomedicine, 14(1), 44–51.

    Article  Google Scholar 

  13. Marinkovic, S., Spagnol, C., & Popovici, E. (2009). Energy efficient TDMA-based MAC protocol for wireless body area networks. In Proc. of IEEE conference on sensor technologies and applications, pp. 604–609.

  14. Wang, B., Wang, L., Huang, B.Y., Wu, D., Lin, S.J., Gu, J., Zhang, Y.T., & Chen, W. (2009). A low-complexity medium access control framework for body sensor networks. In Proceedings of IEEE conference on engineering in medicine and biology society, pp. 2446–2449.

  15. Al Ameen, M., Ullah, N., Sanaullah Chowdhury, M., Riazul Islam, S. M., & Kwak, Kyungsup. (2012). A power efficient MAC protocol for wireless body area networks. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–17.

    Article  Google Scholar 

  16. Ullah, S., Chen, M., & Sup Kwak, K. (2012). Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol. Journal of Medical Systems, 36(6), 3875–3891.

    Article  Google Scholar 

  17. Rashwand, S., Misic, J., & Khazaei, H. (2011). Performance analysis of IEEE 802.15. 6 under saturation condition and error prone channel. In Proceedings of IEEE conference on wireless communications and networking conference, pp. 1167–1172.

  18. Jung, B.H., Akbar, R.U., & Sung, D.K. (2012). Throughput, energy consumption, and energy efficiency of IEEE 802.15. 6 body area network (BAN) MAC protocol. In Proceedings of IEEE conference on personal indoor and mobile radio communications, pp. 584–589.

  19. Sarkar, S., Misra, S., Bandyopadhyay, B., Chakraborty, C., & Obaidat, M. (2015). Performance analysis of IEEE 802.15. 6 MAC protocol under non-ideal channel conditions and saturated traffic regime. In IEEE Transactions on computers, vol. 64, no. 10, pp. 2912–2925.

  20. Tachtatzis, C., Di Franco, F., Tracey, D.C., Timmons, N.F., & Morrison, J. (2010). An energy analysis of IEEE 802.15. 6 scheduled access modes. In Proceedings of IEEE conference on GLOBECOM workshops, pp. 1270–1275.

  21. Prabh, K., & Hauer, J.H. (2011). Opportunistic packet scheduling in body area networks. In Proceedings of European conference on wireless sensor networks (EWSN), Bonn, Germany.

  22. Arrobo, G.E., & Gitlin, R. D. (2011). Improving the reliability of wireless body area networks. In Proceedings of IEEE conference on Engineering in Medicine and Biology Society, Boston, pp. 2192–2195.

  23. Arrobo, G.E., Haas, Z.J., & Gitlin, R.D. (2012). Temporal diversity coding for improving the performance of wireless body area networks. In Proceedings of ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) 7th international conference on body area networks, pp. 187–190.

  24. Liang, T., & Smith, D. B. (2014). Energy-efficient, reliable wireless body area networks: Cooperative diversity switched combining with transmit power control. IET Electronic Letters, 50(22), 1641–1643.

    Article  Google Scholar 

  25. Liu, B., You, Y., & Chen, C.W. (2015). CS-based reliable transmission strategy for Wireless Body Area Networks. In Signal and information processing (ChinaSIP), IEEE China summit and international conference on, pp. 448–452.

  26. Ntouni, G. D., Lioumpas, A. S., & Nikita, K. S. (2014). Reliable and energy-efficient communications for wireless biomedical implant systems. Biomedical and Health Informatics, IEEE Journal of, 18(6), 1848–1856.

    Article  Google Scholar 

  27. Zhang, R., Moungla, H., & Mehaoua, A. (2015). A reliable and energy-efficient leader election algorithm for wireless body area networks. In Communications (ICC), 2015 IEEE international conference on, pp. 530–535.

  28. Tselishchev, Y., Libman, L., & Boulis, A. (2011). Reducing transmission losses in body area networks using variable TDMA scheduling. In Proceedings of 12th IEEE international symposium world of wireless mobile and multimedia networks, Lucca, Italy.

  29. Tselishchev, Y., Libman, L., & Boulis, A. (2011). Energy efficient retransmission strategies under variable TDMA scheduling in body area networks. In Proceedings of 36th IEEE conference on local computer networks, Bonn, Germany.

  30. Torabi, N., & Leung, V. (2014). Cross-layer design for prompt and reliable transmissions over body area networks. IEEE Journal of Biomedical and Health Informatics, 18(4), 1303–1316.

    Article  Google Scholar 

  31. Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. (2015). Dynamic backoff scheduling of low data rate applications in wireless body area networks. In Wireless Networks, Springer, pp. 1–22. doi:10.1007/s11276-015-0929-9.

  32. Zhang, Q., Chaturvedi, M., & Jacobsen, R.H. (2014). Performance study of the enhancement schemes for Baseline MAC of Body Area networks. In Medical information and communication technology (ISMICT), IEEE international symposium on, pp.1–5.

  33. Nordic nRF24L01+. http://www.nordicsemi.com/.

  34. Zarlink ZL70101. http://www.zarlink.com/zarlink/.

  35. Yazdandoost, K. (2010). Task group 6 channel model. https://mentor.ieee.org/802.15/dcn/08/15-08-0780-10-0006-tg6-channel-model.

  36. Reusens, E., Joseph, W., Latré, B., Braem, B., Vermeeren, G., Tanghe, E., et al. (2009). Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Transactions on Information Technology in Biomedicine, 13(6), 933–945.

    Article  Google Scholar 

  37. Fort, A., Ryckaert, J., Desset, C., De Doncker, P., Wambacq, P., & Van Biesen, L. (2006). Ultra-wideband channel model for communication around the human body. IEEE Journal on Selected Areas in Communications, 24(4), 927–933.

    Article  Google Scholar 

  38. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  39. Zhen, B., Patel, M., Lee, S., Won, E., & Astrin, A. (2008). IEEE 802.15 TG6 technical requirements document (TRD). https://mentor.ieee.org/802.15/documents?isdcn=644&isgroup=0006.

  40. Sankarasubramaniam, Y., Akyildiz, I.F., & McLaughlin, S.W. (2003). Energy efficiency based packet size optimization in wireless sensor networks. In Proceedings of IEEE conference on sensor network protocols and applications, pp. 1–8.

  41. Soykan, O. (2002). Power sources for implantable medical devices. Medical Device Manufacturing and Technology, pp.76–79.

  42. Castalia Simulator, http://castalia.npc.nicta.com.au.

  43. Hanlen, L., & Rodda, D. (2010). Public dataset for BAN radio channel models. http://nicta.com.au/research/projects/humanperformanceimprovement/researchoutcomes/wireless.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Deepak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepak, K.S., Babu, A.V. Enhancing Reliability of IEEE 802.15.6 Wireless Body Area Networks in Scheduled Access Mode and Error Prone Channels. Wireless Pers Commun 89, 93–118 (2016). https://doi.org/10.1007/s11277-016-3254-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3254-4

Keywords

Navigation