Skip to main content
Log in

Performance Analysis of Hybrid Satellite–Terrestrial Cooperative Systems with Fixed Gain Relaying

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the performance of a hybrid satellite–terrestrial cooperative relay system, where both of the source-relay and source–destination links experience independent non-identical shadowed-Rician fading while the relay-destination link undergoes uncorrelated Rayleigh fading. By employing maximal-ratio-combining at the destination to combine the signals from the direct link and the fixed-gain relay links, we first obtain the analytical expression for the moment generating function (MGF) of the output signal-to-noise ratio (SNR). Then, with the help of the obtained MGF, we derive the theoretical formulas for the ergodic capacity and average symbol error rate of the considered system. Moreover, the asymptotic analysis at high SNR is also presented to reveal the diversity order and array gain of the system. Finally, the effectiveness of the analytical results is verified through comparison with Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evans, B., Werner, M., Lutz, E., et al. (2005). Integration of satellite and terrestrial systems in future media communications. IEEE Transactions on Wireless Communications, 12(5), 72–80.

    Article  Google Scholar 

  2. Zheng, G., Chatzinotas, S., & Ottersten, B. (2012). Generic optimization of linear precoding in multibeam satellite systems. IEEE Transactions on Wireless Communications, 11(6), 2308–2320.

    Article  Google Scholar 

  3. Zheng, G., Arapoglou, A., & Ottersten, B. (2012). Physical layer security in multibeam satellite systems. IEEE Transactions on Wireless Communications, 11(2), 852–863.

    Article  Google Scholar 

  4. Vanelli-Coralli, A., Corazza, G., Karagiannidis, G., Mathiopoulos, P., Michalopoulos D., Mosquera C., et al. (2007). Satellite communications: Research trends and open issues. In Proceeding of the international workshop on satellite and space communications (IWSSC’07) (pp. 71–75).

  5. Lin, M., Ouyang, J., & Zhu, W. (2016). Joint beamforming and power control for device-to device communications underlaying cellular networks. IEEE Journal on Selected Areas in Communications, 34(1), 138–150.

    Article  Google Scholar 

  6. Ouyang, J., Lin, M., & Zhuang, Y. (2012). Performance analysis of cooperative relay networks over asymmetric fading channels. Electronics Letters, 48(21), 1370–1371.

    Article  Google Scholar 

  7. An, K., Lin, M., Ouyang, J., & Wei, H. (2014). Beamforming in dual-hop AF relaying with imperfect CSI and co-channel interference. Wireless Personal Communications, 78(2), 1187–1197.

    Article  Google Scholar 

  8. Kim, S., Kim, H., Kang, K., & Ahn, D. (2008). Performance enhancement in future mobile satellite broadcasting services. IEEE Communications Magazine, 46(7), 118–124.

    Article  Google Scholar 

  9. Sadek, M., & Aissa, S. (2012). Personal satellite communication: Technologies and challenges. IEEE Wireless Communications, 12(5), 28–35.

    Article  Google Scholar 

  10. An, K., Lin, M., Ouyang, J., Huang, Y., & Zheng, G. (2014). Symbol error analysis on hybrid satellite–terrestrial cooperative networks with co-channel interference. IEEE Communications Letters, 18(11), 1947–1950.

    Article  Google Scholar 

  11. An, K., Ouyang, J., Lin, M., & Liang, T. (2015). Outage analysis of multi-antenna cognitive hybrid satellite–terrestrial relay networks with beamforming. IEEE Communications Letters, 19(7), 1157–1160.

    Article  Google Scholar 

  12. Iqbal, A., & Ahmed, K. M. (2011). A hybrid satellite–terrestrial cooperative network over non identically distributed fading channels. Journal of Communications, 7, 581–589.

    Google Scholar 

  13. Sakarellos, V. K., Kourogiorgas, C., & Panagopoulos, A. D. (2014). Cooperative hybrid land mobile satellite–terrestrial broadcasting systems: Outage probability evaluation and accurate simulation. Wireless Personal Communications, 79(2), 1471–1481.

    Article  Google Scholar 

  14. Sreng, S., Escrig, B., & Boucheret, M.-L. (2013). Exact outage probability of a hybrid satellite terrestrial cooperative system with best relay selection. In Proceedings of the IEEE ICC 2013 (pp. 4520–4524).

  15. Bhatnagar, M. R., & Arti, M. K. (2013). Performance analysis of AF based hybrid satellite–terrestrial cooperative network over generalize. IEEE Communications Letters, 17(10), 1912–1915.

    Article  Google Scholar 

  16. Yeoh, P. L., Elkashlan, M., & Collings, I. B. (2010). Selection relaying with transmit beamforming: A comparison of fixed and variable gain relaying. IEEE Transactions on Vehicle Technology, 59(1), 105–113.

    Article  Google Scholar 

  17. Abdi, A., Lau, W., Alouini, M., & Kaveh, M. (2003). A New simple model for land mobile satellite channels: First-and second-order statistics. IEEE Transactions on Wireless Communications, 2(3), 519–528.

    Article  Google Scholar 

  18. Simon, M., & Alouini, M. (2005). Digital communication over fading channels (p. 86). New York: Wiley/IEEE Press.

    Google Scholar 

  19. Fan, L., Lei, X., & Li, W. (2011). Exact closed-form expression for ergodic capacity of amplify-and-forward relaying in channel-noise-assisted cooperative networks with relay selection. IEEE Communications Letters, 15(3), 332–333.

    Article  Google Scholar 

  20. Li, M., Lin, M., Yu, Q., & Dong, L. (2012). Optimal beamformer design for two hop MIMO AF relay network over Rayleigh fading channels. IEEE Journal on Selected Areas in Communications, 30(8), 3027–3079.

    Article  Google Scholar 

  21. Proakis, J. G. (2011). Digital communications (4th ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  22. Gradshteyn, I. S., Ryzhik, I. M., & Jeffrey, A. (2007). Table of integrals, series, and products (7th ed.). Burlington: Academic Press.

    MATH  Google Scholar 

  23. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

  24. Simon, M. K., & Alouini, M. S. (2000). Digital communications over fading channels: A unified approach to performance analysis. New York: Wiley.

    Book  Google Scholar 

  25. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical function with formulas, graphs, and mathematical tables. 10th, ver publications.

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants 61271255, by the China Postdoctoral Science Foundation under Grant 2015M571784, by the Natural Science Foundation of Jiangsu Province under Grant BK20131068, by the Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 1402068B, by the Open Research Fund of the National Mobile Communications Research Laboratory of Southeast University under Grant 2012D15, by the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology under Grant NYKL2015010, and by NUPTSF under Grant NY214140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Lin.

Appendices

Appendix 1: Proof of Theorem 1

By substituting (7) into (11), \(E\left[ {\gamma_{sd} } \right],E\left[ {\gamma_{sd}^{2} } \right],E\left[ {\gamma_{i} } \right]\) and \(E\left[ {\gamma_{i}^{2} } \right]\) can be calculated as

$$E\left[ {\gamma_{sd} } \right] = \int_{0}^{\infty } {xf_{sd} } \left( x \right)dx = \sum\limits_{n = 0}^{\infty } {\frac{1}{{\left( {n!} \right)^{2} \left( {2b_{0} \gamma_{sd} } \right)^{n + 1} }}} \frac{{\Gamma \left( {m_{0} + n} \right)}}{{\Gamma \left( {m_{0} } \right)}}\left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n} \int_{0}^{\infty } {x^{n + 1} } \exp \left( { - \frac{x}{{2b_{0} \gamma_{sd} }}} \right)dx$$
(41)
$$E\left[ {\gamma_{sd}^{2} } \right] = \int_{0}^{\infty } {x^{2} f_{sd} } \left( x \right)dx = \sum\limits_{n = 0}^{\infty } {\frac{1}{{\left( {n!} \right)^{2} \left( {2b_{0} \gamma_{sd} } \right)^{n + 1} }}} \frac{{\Gamma \left( {m_{0} + n} \right)}}{{\Gamma \left( {m_{0} } \right)}}\left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n} \int_{0}^{\infty } {x^{n + 2} } \exp \left( { - \frac{x}{{2b_{0} \gamma_{sd} }}} \right)dx$$
(42)

With the help of the identity [22]

$$\int_{0}^{\infty } {x^{n} \exp \left( { - ux} \right)dx = n!u^{ - n - 1} }$$
(43)

(41) and (42) can be rewritten as

$$E\left[ {\gamma_{sd} } \right] = \frac{{2b_{0} \gamma_{sd} }}{{\Gamma \left( {m_{0} } \right)}}\left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \sum\limits_{n = 0}^{\infty } {\frac{{\Gamma \left( {m_{0} + n} \right)}}{{\Gamma \left( {n + 1} \right)}}} \left( {n + 1} \right)\left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n}$$
(44)
$$E\left[ {\gamma_{sd}^{2} } \right] = \frac{{\left( {2b_{0} \gamma_{sd} } \right)^{2} }}{{\Gamma \left( {m_{0} } \right)}}\left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \sum\limits_{n = 0}^{\infty } {\frac{{\Gamma \left( {m_{0} + n} \right)}}{{\Gamma \left( {n + 1} \right)}}} \left( {n + 1} \right)(n + 2)\left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n}$$
(45)

Next, in order to get \(E\left[ {\gamma_{i} } \right]\) and \(E\left[ {\gamma_{{_{i} }}^{2} } \right]\) we focus on the CDF \(\gamma_{i}\) which is given by

$$F_{{\gamma_{i} }} (u) = 1 - \int_{u}^{\infty } {\left[ {1 - F_{{\gamma_{{r_{i} d}} }} \left( {\frac{Cu}{x - u}} \right)} \right]} f_{{\gamma_{{sr_{i} }} }} \left( x \right)dx$$
(46)

where \(F_{{\gamma_{{r_{i} d}} }} \left( x \right)\) is the CDF of \(\gamma_{{r_{i} d}}\) given by

$$F_{{\gamma_{{r_{i} d}} }} \left( x \right) = 1 - \exp \left( { - \frac{x}{{\gamma_{{r_{i} d}} }}} \right)$$
(47)

By using (7) and (47), (46) can be rewritten as

$$F_{{\gamma_{i} }} \left( u \right) = 1 - \left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \frac{1}{{2b_{0} \gamma_{{sr_{i} }} }}\int_{u}^{\infty } {\exp \left( { - \frac{x}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)} \exp \left( { - \frac{Cu}{{\gamma_{{r_{i} d}} \left( {x - u} \right)}}} \right){}_{1}F_{1} \left( {m_{0} ,1,\frac{\Omega x}{{2b_{0} \gamma_{{sr_{i} }} \left( {2b_{0} m_{0} + \Omega } \right)}}} \right)dx$$
(48)

where \({}_{1}F_{1} \left( {a,b,z} \right)\) represents the confluent hypergeometric function defined as [22]

$${}_{p}F_{q} \left( {a_{1} , \ldots ,a_{p} ;b_{1} , \ldots ,b_{q} ;z} \right) = \sum\limits_{n = 0}^{\infty } {\frac{{\left( {a_{1} } \right)_{n} \ldots \left( {a_{p} } \right)_{n} }}{{\left( {b_{1} } \right)_{n} \ldots \left( {b_{q} } \right)_{n} }}} \frac{{z^{n} }}{n!}$$
(49)

with \(\left( x \right)_{n} = x\left( {x + 1} \right)\left( {x + n - 1} \right) = {{\Gamma \left( {x + n} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {x + n} \right)} {\Gamma \left( x \right)}}} \right. \kern-0pt} {\Gamma \left( x \right)}}\) being the Pochhammer symbol [24]. Thus the \(F_{{\gamma_{i} }} \left( \cdot \right)\) could be rewritten as

$$\begin{aligned} F_{{\gamma_{i} }} \left( u \right) & = 1 - \frac{1}{{2b_{0} \gamma_{{sr_{i} }} }}\left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \int_{u}^{\infty } {\sum\limits_{n = 0}^{\infty } {\frac{{\Gamma \left( {m_{0} + n} \right)}}{{\left( {n!} \right)^{2} \Gamma \left( {m_{0} } \right)}}} } \left( {\frac{\Omega x}{{2b_{0} \gamma_{{sr_{i} }} \left( {2b_{0} m_{0} + \Omega } \right)}}} \right)^{n} \exp \left( { - \frac{Cu}{{\gamma_{{r_{i} d}} \left( {x - u} \right)}} - \frac{x}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)dx \\ & = 1 - \sum\limits_{n = 0}^{\infty } {\frac{{\Gamma \left( {m_{0} + n} \right)}}{{\left( {n!} \right)^{2} \Gamma \left( {m_{0} } \right)}}} \frac{{\Omega^{n} \left( {2b_{0} m_{0} } \right)^{{m_{0} }} I_{1} }}{{\left( {2b_{0} \gamma_{{sr_{i} }} } \right)^{n + 1} \left( {2b_{0} m_{0} + \Omega } \right)^{{n + m_{0} }} }} \\ \end{aligned}$$
(50)

where

$$\begin{aligned} I_{1} & = \int_{u}^{\infty } {x^{n} \exp \left( { - \frac{Cu}{x - u}\frac{1}{{\gamma_{{r_{i} d}} }} - \frac{x}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)dx} \, \underline{\underline{x - u = t}} \, \int_{0}^{\infty } {\left( {t + u} \right)^{n} \exp \left( { - \frac{Cu}{t}\frac{1}{{\gamma_{{r_{i} d}} }} - \frac{t + u}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)dt} \\ & = \exp \left( { - \frac{\mu }{{2b_{0} \gamma_{{sr_{i} }} }}} \right)\sum\limits_{j = 0}^{n} {\mu^{n - j} } \frac{n!}{{j!\left( {n - j} \right)!}}\int_{0}^{\infty } {t^{j} \exp \left( { - \frac{C\mu }{{\gamma_{{r_{i} d}} }}\frac{1}{t} - \frac{t}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)dt} \\ \end{aligned}$$
(51)

In deriving (51), we have used the formula \(\left( {t + u} \right)^{n} = \sum\limits_{j = 0}^{n} {\frac{n!}{{j!\left( {n - j} \right)!}}u^{n - j} } t^{j}\). With the help of the identity [22]

$$\int_{0}^{\infty } {x^{v - 1} } \exp \left( { - \beta x - \frac{\alpha }{x}} \right)dx = 2\left( {\frac{\alpha }{\beta }} \right)^{{\frac{v}{2}}} K_{v} \left( {2\sqrt {\alpha \beta } } \right)$$
(52)

where \(K_{n} \left( x \right)\) is the nth order modified Bessel function of the second kind, we have

$$I_{1} = 2\exp \left( { - \frac{u}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)\sum\limits_{j = 0}^{n} {u^{n - j} \frac{n!}{{j!\left( {n - j} \right)!}}} \left( {\frac{{2Cub_{0} \gamma_{{sr_{i} }} }}{{\gamma_{{r_{i} d}} }}} \right)^{{\frac{j + 1}{2}}} K_{j + 1} \left( {2\sqrt {\frac{C}{{2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}} }}u} } \right)$$
(53)

By substituting (53) into (50), after some algebraic manipulations, \(F_{{\gamma_{i} }} \left( \mu \right)\) can computed as

$$\begin{aligned} F_{{\gamma_{i} }} \left( x \right) & = 1 - \frac{2}{{\Gamma \left( {m_{0} } \right)}}\left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \sum\limits_{n = 0}^{\infty } {\sum\limits_{j = 0}^{n} {\frac{1}{{j!\left( {n - j} \right)!}}\frac{{\Gamma \left( {m_{0} + n} \right)}}{{\Gamma \left( {n + 1} \right)}}} } \left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n} \\ & \quad \times \left( {\frac{C}{{\gamma_{{r_{i} d}} }}} \right)^{{{{\left( {j + 1} \right)} \mathord{\left/ {\vphantom {{\left( {j + 1} \right)} 2}} \right. \kern-0pt} 2}}} \left( {\frac{x}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)^{{n + \frac{1}{2} - \frac{j}{2}}} \exp \left( { - \frac{x}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)K_{j + 1} \left( {2\sqrt {\frac{C}{{2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}} }}x} } \right) \\ \end{aligned}$$
(54)

Using the (54) into (11) with m = 1 and m = 2, respectively, we have

$$\begin{aligned} E\left[ {\gamma_{i} } \right] & = \sum\limits_{n = 0}^{\infty } {\sum\limits_{j = 0}^{n} {\frac{{\left( {{C \mathord{\left/ {\vphantom {C {\gamma_{{r_{i} d}} }}} \right. \kern-0pt} {\gamma_{{r_{i} d}} }}} \right)^{{{{\left( {j + 1} \right)} \mathord{\left/ {\vphantom {{\left( {j + 1} \right)} 2}} \right. \kern-0pt} 2}}} }}{{j!\left( {n - j} \right)!\left( {2b_{0} \gamma_{{sr_{i} }} } \right)^{{n - {j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2} + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} }}} \left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n} \left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} } \\ & \quad \times \frac{{2\Gamma \left( {m_{0} + n} \right)}}{{n!\Gamma \left( {m_{0} } \right)}}\int_{0}^{\infty } {\left[ {x^{{n - \frac{j}{2} + \frac{1}{2}}} \exp \left( { - \frac{x}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)K_{j + 1} \left( {2\sqrt {\frac{C}{{2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}} }}x} } \right)} \right]} dx \\ \end{aligned}$$
(55)
$$\begin{aligned} E\left[ {\gamma_{i}^{2} } \right] & = \sum\limits_{n = 0}^{\infty } {\sum\limits_{j = 0}^{n} {\frac{{\left( {{C \mathord{\left/ {\vphantom {C {\gamma_{{r_{i} d}} }}} \right. \kern-0pt} {\gamma_{{r_{i} d}} }}} \right)^{{{{\left( {j + 1} \right)} \mathord{\left/ {\vphantom {{\left( {j + 1} \right)} 2}} \right. \kern-0pt} 2}}} }}{{j!\left( {n - j} \right)!\left( {2b_{0} \gamma_{{sr_{i} }} } \right)^{{n - {j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2} + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} }}} \frac{{4\Gamma \left( {m_{0} + n} \right)^{n} }}{{n!\Gamma \left( {m_{0} } \right)}}\left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n} } \\ & \quad \times \left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \int_{0}^{\infty } {\left[ {x^{{n - \frac{j}{2} + \frac{3}{2}}} \exp \left( { - \frac{x}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)K_{j + 1} \left( {2\sqrt {\frac{C}{{2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}} }}x} } \right)} \right]} dx \\ \end{aligned}$$
(56)

With the application of the formula [22]

$$\int_{0}^{\infty } {x^{u - 1} \exp \left( { - \alpha x} \right)K_{2v} \left( {2\beta \sqrt x } \right)dx = \exp \left( {\frac{{\beta^{2} }}{2\alpha }} \right)} \alpha^{ - \mu } \frac{{\Gamma \left( {u + \nu + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}} \right)\Gamma \left( {u - \nu + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}} \right)}}{2\beta }W_{ - u,\nu } \left( {\frac{{\beta^{2} }}{\alpha }} \right)$$
(57)

where \(W_{k,m} \left( \cdot \right)\) is Whittaker function given by [25]

$$W_{k,m} \left( z \right) = z^{{m + \frac{1}{2}}} \exp \left( { - \frac{z}{2}} \right)U\left( {m - k + \frac{1}{2},2m + 1;z} \right)$$
(58)

where \(U\left( { \cdot , \cdot ; \cdot } \right)\) is the confluent hypergeometric function of the second kind [22], after some calculation, (55) and (56) can be written as

$$E\left[ {\gamma_{i} } \right] = \left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \sum\limits_{n = 0}^{\infty } {\frac{{\Gamma \left( {m_{0} + n} \right)}}{{\Gamma \left( {m_{0} } \right)}}} \frac{{2b_{0} \gamma_{{sr_{i} }} C^{j + 1} (n + 1)}}{{\Gamma \left( {j + 1} \right)}}\left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n} \sum\limits_{j = 0}^{n} {U\left( {n + 2,j + 2,{C \mathord{\left/ {\vphantom {C {\gamma_{{r_{i} d}} }}} \right. \kern-0pt} {\gamma_{{r_{i} d}} }}} \right)}$$
(59)
$$\begin{aligned} E\left[ {\gamma_{i}^{2} } \right] & = 8b_{0}^{2} \gamma_{{sr_{i} }}^{2} \left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \sum\limits_{n = 0}^{\infty } {\sum\limits_{j = 0}^{n} {\left( {n + 2} \right)\left( {n + 1} \right)\frac{{\left( {n - j + 1} \right)}}{{\Gamma \left( {j + 1} \right)}}} } \\ & \quad \times \frac{{\Gamma \left( {m_{0} + n} \right)}}{{\Gamma \left( {m_{0} } \right)}}\left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{n} \left( {\frac{C}{{\gamma_{{r_{i} d}} }}} \right)^{j + 1} U\left( {n + 3,j + 2,{C \mathord{\left/ {\vphantom {C {\gamma_{{r_{i} d}} }}} \right. \kern-0pt} {\gamma_{{r_{i} d}} }}} \right) \\ \end{aligned}$$
(60)

Appendix 2: Proof of Theorem 2

The fixed gain constant C in (3) can be written as

$$C = \frac{1}{{G^{2} \sigma_{i}^{2} }} = E\left[ {\left\| {h_{i} } \right\|_{F}^{2} \frac{{P_{s} }}{{\sigma_{i}^{2} }}} \right] + 1 = E\left[ {\gamma_{{sr_{i} }} } \right] + 1$$
(61)

To obtain \(E\left[ {\gamma_{{sr_{i} }} } \right]\), we substitute (3) into (8), and yield

$$E\left[ {\gamma_{{sr_{i} }} } \right] = \int_{0}^{\infty } {xf_{{sr_{i} }} } \left( x \right)dx = \sum\limits_{k = 0}^{\infty } {\frac{{\Gamma \left( {m_{0} + k} \right)}}{{\Gamma \left( {m_{0} } \right)}}} \frac{1}{{\left( {2b_{0} \gamma_{{sr_{i} }} } \right)^{k + 1} }}\frac{1}{{\left( {k!} \right)^{2} }}\left( {\frac{{2b_{0} m_{0} }}{{2b_{0} m_{0} + \Omega }}} \right)^{{m_{0} }} \left( {\frac{\Omega }{{2b_{0} m_{0} + \Omega }}} \right)^{k} \int_{0}^{\infty } {x^{k + 1} } \exp \left( { - \frac{x}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)dx$$
(62)

With the help of (43), one can obtain

$$E\left[ {\gamma_{{sr_{i} }} } \right] = \sum\limits_{k = 0}^{\infty } {\frac{{2b_{0} \gamma_{{sr_{i} }} \left( {2b_{0} m_{0} } \right)^{{m_{0} }} \left( {k + 1} \right)\Omega^{k} }}{{\left( {2b_{0} m_{0} + \Omega } \right)^{{k + m_{0} }} }}\frac{{\Gamma \left( {m_{0} + k} \right)}}{{k!\Gamma \left( {m_{0} } \right)}}}$$
(63)

The fixed-gain constant C is thus given by

$$C = \sum\limits_{k = 0}^{\infty } {\frac{{2b_{0} {\gamma_{sr}}_{{{i} }} \left( {2b_{0} m_{0} } \right)^{{m_{0} }} \Omega^{k} \left( {k + 1} \right)}}{{\left( {2b_{0} m_{0} + \Omega } \right)^{{k + m_{0} }} }}} \frac{{\Gamma \left( {m_{0} + k} \right)}}{{k!\Gamma \left( {m_{0} } \right)}} + 1$$
(64)

Appendix 3: Proof of Theorem 3

Substituting (46) into (23), after some algebraic manipulations, the expression of \(M_{{\gamma_{i} }} \left( s \right)\) is given by

$$M_{{\gamma_{i} }} \left( s \right) = 1 - \sum\limits_{n = 0}^{\infty } {\sum\limits_{j = 0}^{n} {\frac{{2\Gamma \left( {m_{0} + n} \right)s}}{{j!\left( {n - j} \right)!n!\Gamma \left( {m_{0} } \right)\left( {2b_{0} \gamma_{{sr_{i} }} } \right)^{{n - \frac{j}{2} + \frac{1}{2}}} }}} } \frac{{\Omega^{n} \left( {2b_{0} m_{0} } \right)^{{m_{0} }} }}{{\left( {2b_{0} m_{0} + \Omega } \right)^{{n + m_{0} }} }}\left( {\frac{C}{{\gamma_{{r_{i} d}} }}} \right)^{{{{\left( {j + 1} \right)} \mathord{\left/ {\vphantom {{\left( {j + 1} \right)} 2}} \right. \kern-0pt} 2}}} I_{2}$$
(65)

where

$$I_{2} = \int_{0}^{\infty } {u^{{n - \frac{j}{2} + \frac{1}{2}}} \exp \left( { - \left( {\frac{{1 + 2b_{0} \gamma_{{sr_{i} }} s}}{{2b_{0} \gamma_{{sr_{i} }} }}} \right)u} \right)} K_{j + 1} \left( {2\sqrt {\frac{C}{{2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}} }}u} } \right)du$$
(66)

By using (57) and (58), it follows that

$$I_{2} = 4\left( {2b_{0} \gamma_{{sr_{i} }} } \right)^{{ - \frac{j}{2} + n - \frac{1}{2}}} \left( {\frac{C}{{\gamma_{{r_{i} d}} }}} \right)^{{\frac{j}{2} + \frac{3}{2}}} \frac{{\left( {n + 1} \right)!\left( {n - j} \right)!}}{{\left( {1 + 2b_{0} \gamma_{{sr_{i} }} s} \right)^{n + 2} }}U\left( {n + 2,j + 2,\frac{C}{{\gamma_{{r_{i} d}} + 2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}} s}}} \right)$$
(67)

Substituting (67) into (65), we can get

$$\begin{aligned} M_{{\gamma_{i} }} \left( s \right) & = 1 - \sum\limits_{n = 0}^{\infty } {\sum\limits_{j = 0}^{n} {\frac{{\left( {n + 1} \right)\Gamma \left( {m_{0} + n} \right)}}{{Cj!\Gamma \left( {m_{0} } \right)}}} } \frac{{\Omega^{n} \left( {2b_{0} m_{0} } \right)^{{m_{0} }} }}{{\left( {2b_{0} m_{0} + \Omega } \right)^{{n + m_{0} }} }}\frac{{2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}} s}}{{\left( {1 + 2b_{0} \gamma_{{sr_{i} }} s} \right)^{{n - {j \mathord{\left/ {\vphantom {j {2 + 1}}} \right. \kern-0pt} {2 + 1}}}} }} \\ & \quad \times \left( {\frac{{C^{2} }}{{\gamma_{{r_{i} d}}^{2} + 2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}}^{2} s}}} \right)^{{\left( {{j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2}} \right) + 1}} U\left( {n + 2,j + 2,\frac{C}{{\gamma_{{r_{i} d}} + 2b_{0} \gamma_{{sr_{i} }} \gamma_{{r_{i} d}} s}}} \right) \\ \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, YJ., Lin, M., An, K. et al. Performance Analysis of Hybrid Satellite–Terrestrial Cooperative Systems with Fixed Gain Relaying. Wireless Pers Commun 89, 427–445 (2016). https://doi.org/10.1007/s11277-016-3278-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3278-9

Keywords

Navigation