Skip to main content
Log in

Performance of a Three-Dimensional Antenna Array and Its Application in DOA Estimation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we develop a novel three-dimensional (3D) multiantenna array for enhancing the performance of multiple input multiple output systems. This array is composed of two uniform circular arrays (UCAs). A frequency nonselective Rayleigh fading channel model is introduced to calculate the spatial fading correlation (SFC) and capacity of a multipath channel. Then, the influence of the rotation angle \(\phi _0\) and the perpendicular distance h of the upper UCA in a double uniform circular array (DUCA) with reference to the lower UCA and the radius r of the DUCA on the SFC and the capacity are investigated. In addition, the DUCA is applied to a multiple signal classification algorithm in order to estimate the direction of arrival (DOA). Simulation results show that \(\phi _0\) which results in the minimum correlation and the maximum capacity depends on the angle of arrival, and the increase in h and r enhances the capacity performance. However, when \(h/\lambda >1/2, h\) has little effect on the capacity. Comparing the spatial spectrum and the root mean square error of the DUCA with a general uniform linear array, UCA, and 2-L array, this paper shows that 3D antenna arrays have significant advantages in DOA estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  2. Adachi, F., & Ohno, K. (1991). BER performance of QDPSK with postdetection diversity reception in mobile radio channels. IEEE Transactions on Vehicular Technology, 40(1), 237–249.

    Article  Google Scholar 

  3. Buyukcorak, S., & Karabulut, K. G. (2011). Simulation and measurement of spatial correlation in MIMO systems with ray tracing. IEEE 5th International Conference on Signal Processing and Communication Systems, Honolulu, Hawaii, pp.1–5.

  4. Petrus, P., Reed, J. H., & Rappaport, T. S. (2002). Geometrical-based statistical macrocell channel model for mobile environments. IEEE Transactions on Communications, 50(3), 495–502.

    Article  Google Scholar 

  5. Zhou, J., Qiu, L., Li, C., & Kikuchi, H. (2012). Analyses and comparisons of geometrical-based channel model arisen from scatterers on a hollow-disc for outdoor and indoor wireless environments. IET Communications, 6(17), 2775–2786.

    Article  MathSciNet  Google Scholar 

  6. Kyritsi, P., Cox, D. C., Valenzuela, R. A., & Wolniansky, P. (2002). Effect of antenna polarization on the capacity of a multiple element system in an indoor environment. IEEE Journal on Selected Areas in Communications, 20(6), 1227–1239.

    Article  Google Scholar 

  7. Shin, H., & Lee, J. H. (2003). Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole. IEEE Transactions on Information Theory, 49(10), 2636–2647.

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, J., Sasaki, S., Muramatsu, S., Kikuchi, H., & Onozato, Y. (2003). Spatial correlation for a circular antenna array and its applications in wireless communication. IEEE Global Telecommunications Conference, San Francisco, CA, 2, 1108–1113.

  9. Wang, H., Wang, L., & Li, H. (2009). A novel numerical model for simulating three dimensional MIMO channels with complex antenna arrays. IEEE Transaction on Antenna and Propagation, 57(8), 2439–2450.

    Article  Google Scholar 

  10. Yong, S. K., & Thompson, J. S. (2005). Three-dimensional spatial fading correlation models for compact MIMO receivers. IEEE Transactions on Wireless Communications, 4(6), 2856–2869.

    Article  Google Scholar 

  11. Jiang, H., Zhou, J., & Kikuchi, H. (2015). Performance of uniform concentric circular arrays in a three-dimensional spatial fading channel model. Wireless Personal Communications, 83(4), 2949–2963.

    Article  Google Scholar 

  12. Zhou, J., Qiu, L., & Kikuchi, H. (2013). Analysis of MIMO antenna array based on electromagnetic vector sensor. (China). Journal on Communications, 34(5), 1–11.

    Google Scholar 

  13. Hajian, M., Coman, C., & Ligthart, L. P. (2006). Comparison of circular, Uniform-and non Uniform Y-Shaped Array Antenna for DOA Estimation using Music Algorithm. The 9th European Conference on Wireless Technology, Manchester, England, pp.143–146

  14. Tayem, N., & Kwon, H. M. (2005). L-shape 2-dimensional arrival angle estimation with propagator method. IEEE transactions on antennas and propagation, 53(5), 1622–1630.

    Article  Google Scholar 

  15. Schmidt, R. O. (1981). A signal subspace approach to multiple estimator location and spectral estimation. Stanford, CA: Stanford University. Ph.D. dissertation.

    Google Scholar 

  16. Schmidt, R. O. (1979). Multiple emitter location and signal parameter estimation. Rome, Italy: Proc. RADC Spectrum Estimation Workshop. C258.

    Google Scholar 

  17. Roy, R. H. (1987). ESPRIT-estimation of signal parameters via rotational invariance techniques. Stanford: Stanford University. Ph.D. dissertation.

    MATH  Google Scholar 

  18. Roy, R., & Kailath, T. (1990). ESPRIT-Estimation of signal parameters via rotational invariance techniques. Optical Engineering, 29(4), 296. C313.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yong, S. K., & Thompson, J. S. (2003). A 3-dimensional spatial fading correlation model for electromagnetic vector sensors. IEEE Antennas wireless Propagation Letter, 2(1), 843–846.

    Google Scholar 

  20. Baysal, U., & Moses, R. L. (2003). On the geometry of isotropic arrays. IEEE Transaction on Signal Processing, 51(6), 1469–1478.

    Article  MathSciNet  Google Scholar 

  21. Harabi, F., Gharsallah, A., & Marcos, S. (2009). Three-dimensional antennas array for the estimation of direction of arrival. IET on Microwave, Antenna and Propagation, 3(5), 843–849.

    Article  Google Scholar 

  22. Goldsmith, A. (2005). Wireless Communications. England: Cambridge University Press.

    Book  Google Scholar 

  23. Andersen, J. B., & Pedersen, K. I. (2002). Angle-of-arrival statistics for low resolusion antenna. IEEE Transaction on Antennas Propagation, 50(3), 391–395.

    Article  Google Scholar 

  24. Pollock, T. S., Abhayapala, T. D., & Kennedy, R. A. (2003). Introducing space into space-time MIMO capacity calculations: A new closed form upper bound. Proceedings of the IEEE International Conference on Telecommunications, 24(2–4), 1536–1541.

    Google Scholar 

  25. Buehrer, R. M. (2002). The impact of angular energy distribution on spatial correlation. Proceedings of the IEEE 56th Vehicular Technology Conference, 2, 1173–1177. Fall.

    Article  Google Scholar 

  26. Gradshteyn, I. S., & Ryzhik, I. M. (1999). Table of integrals, series and products (7th ed.). San Diego, CA: Academic.

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their constructive comments, which greatly helped improve this paper. They also acknowledge Professor Fumiyuki Adachi for his help in completing this paper, Department of Electrical and Electronic Engineering, Tohoku University, Japan. This research was supported by the National Natural Science Foundation of China(No. 61372128 and 61471153) and the Major Program of the Natural Science Foundation of Institution of Higher Education of Jiangsu Province (No.14KJA510001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Wang.

Appendix A

Appendix A

$$\begin{aligned} \rho (m,n)&= {} G_1\int _{\varphi _0 -\Delta _\varphi }^{\varphi _0+\Delta _\varphi }\int _{\theta _0- \Delta _{\theta }}^{\theta _0+\Delta _{\theta }}e^{j\big \{\zeta (cos(\varphi -\alpha _m)-\cos (\varphi -\alpha _n))-k_wh\cos \theta \big \}} \sin \theta {\mathrm {d}}\theta \mathrm {d}\varphi \nonumber \\&= {} G_1\int _{\varphi _0-\Delta _\varphi }^{\varphi _0 +\Delta _\varphi }\int _{\theta _0- \Delta _{\theta }}^{\theta _0+\Delta _{\theta }}e^{j\big \{(Z_1\cos \varphi +Z_2\sin \varphi )\sin \theta +Z_3\cos \theta \big \}}\sin \theta {\mathrm {d}}\theta \mathrm {d}\varphi \nonumber \\&= {} G_1\int _{\varphi _0+\xi -\Delta _\varphi }^{\varphi _0+\xi +\Delta _\varphi }\int _{\theta _0- \Delta _{\theta }}^{\theta _0+\Delta _{\theta }}e^{j(Z\sin \beta \sin \theta +Z_3\cos \theta )}\sin \theta {\mathrm {d}}\theta \mathrm {d}\beta \end{aligned}$$
(26)

where \(G_1=1/(4\Delta _\varphi \sin \theta _0\sin \Delta _\theta )\); \(\beta =\varphi +\xi\); \(Z_1=\frac{2\pi r}{\lambda }(\cos \alpha _m-\cos \alpha _n), Z_2=\frac{2\pi r}{\lambda }(\sin \alpha _m-\sin \alpha _n)\), and \(Z_3=-\frac{2\pi h}{\lambda }\) with \(Z=\sqrt{Z_1^2+Z_2^2}\), and \(\xi =\tan ^{-1}(Z_1/Z_2)\). The real and imaginary part of \(\rho (m,n)\) can be derived as

$$\begin{aligned} Re[\rho (m,n)]&= {} G_1\int _{\varphi _0+\xi -\Delta _\varphi }^{\varphi _0 +\xi +\Delta _\varphi }\int _{\theta _0- \Delta _{\theta }}^{\theta _0+\Delta _{\theta }}\cos (Z\sin \beta \sin \theta +Z_3\cos \theta )\sin \theta {\mathrm {d}}\theta \mathrm {d} \beta \nonumber \\&= {} G_1\int _{\varphi _0+\xi -\Delta _\varphi }^{\varphi _0+\xi +\Delta _\varphi }\int _{\theta _0- \Delta _{\theta }}^{\theta _0+\Delta _{\theta }}\big \{\cos (Z \sin \beta \sin \theta )\cos (Z_3\cos \theta ) \nonumber \\&\quad -\sin (Z\sin \beta \sin \theta )\sin (Z_3\cos \theta )\big \} \sin \theta {\mathrm {d}}\theta \mathrm {d}\beta \end{aligned}$$
(27)
$$\begin{aligned} Im[\rho (m,n)]&= {} G_1\int _{\varphi _0 +\xi -\Delta _\varphi }^{\varphi _0+\xi +\Delta _\varphi }\int _{\theta _0- \Delta _{\theta }}^{\theta _0+\Delta _{\theta }} \sin (Z\sin \beta \sin \theta +Z_3\cos \theta ) \sin \theta {\mathrm {d}}\theta \mathrm {d}\beta \nonumber \\&= {} G_1\int _{\varphi _0+\xi -\Delta _\varphi }^{\varphi _0+\xi +\Delta _\varphi }\int _{\theta _0- \Delta _{\theta }}^{\theta _0+\Delta _{\theta }}\big \{\cos (Z\sin \beta \sin \theta )\cos (Z_3\cos \theta ) \nonumber \\&\quad -\sin (Z\sin \beta \sin \theta ) \sin (Z_3\cos \theta )\big \}\sin \theta {\mathrm {d}}\theta \mathrm {d}\beta \end{aligned}$$
(28)

In these formulas, \(\cos (Z\sin \beta \sin \theta ), \cos (Z_3\cos \theta ), \sin (Z\sin \beta \sin \theta )\), and \(\sin (Z_3\cos \theta )\) can be expressed by the modified Bessel functions as follows [26]

$$\begin{aligned} \sin (x\sin \theta )=2\sum _{k=0}^{\infty }J_{2k+1}(x)\sin ((2k+1)\theta )\end{aligned}$$
(29)
$$\begin{aligned} \sin (x\cos \theta )=2\sum _{k=0}^{\infty }(-1)^{k} J_{2k+1}(x)\cos ((2k+1)\theta )\end{aligned}$$
(30)
$$\begin{aligned} \cos (x\sin \theta )=J_0(x)+2\sum _{k=1}^{\infty }J_{2k}(x) \cos (2k\theta )\end{aligned}$$
(31)
$$\begin{aligned} \cos (x\cos \theta )=J_0(x)+2\sum _{k=1}^{\infty } (-1)^kJ_{2k}(x)\cos (2k\theta ) \end{aligned}$$
(32)

where \(J_k\) is the Bessel function of the kth order. Substitute finite series as follows for the Bessel functions

$$\begin{aligned} J_v(Z)=(\frac{Z}{2})^v\sum _{k=0}^{\infty } \frac{(-1)^k}{(k!)\Gamma (v+k+1)}(\frac{Z}{2})^{2k} \end{aligned}$$
(33)

Substituting (29)–(33) for (27) and (28) and using (18) and (19), the closed-form expression of SFC between \(a_m\) and \(b_n\) can be derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, J. & Kikuchi, H. Performance of a Three-Dimensional Antenna Array and Its Application in DOA Estimation. Wireless Pers Commun 89, 521–537 (2016). https://doi.org/10.1007/s11277-016-3285-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3285-x

Keywords

Navigation