Skip to main content
Log in

Performance Analysis of Multiantenna MC DS CDMA System Over Correlated ηµ Multipath Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In wireless communication channels, the performance of the wireless communication systems deteriorate due to the severe influence of interference, multipath fading, path loss, shadowing, and noise, respectively. In this paper, we investigate the performance of the system transmitting over correlated ηµ frequency selective fading channels in terms of average error rates. Based on moment generating function approach, closed form expressions for average error probabilities for the system are derived and represented in terms of Appell’s hypergeometric functions and Lauricella’s multivariate hypergeometric functions. In addition, probability density function based approach is employed to determine the formulae for average error probabilities of the system operating over correlated ηµ multipath fading channels. The numerical results reveal that, the effects of correlation, decaying power factor and signal constellation size can be reduced using frequency, spatial antennas and path diversities, respectively. Furthermore, we confirm the correctness of the analytical approaches through Monte Carlo simulation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hara, S., & Prasad, R. (1997). Overview of multicarrier CDMA. IEEE Communications Magazine, 35(12), 126–133.

  2. Yang, L.-L. (2009). Multicarrier communications. London: Wiley.

    Google Scholar 

  3. Wang, L. C., & Chang, C. W. (2006). On the performance of multicarrier DS CDMA with imperfect power control and variable spreading factors. IEEE Journal on Selected Areas in Communications, 24, 1154–1166.

    Article  Google Scholar 

  4. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Commun., 16(8), 1451–1458.

    Article  Google Scholar 

  5. Yang, L.-L., & Hanzo, L. (2000). Performance of broadband multicarrier DS-CDMA using space–time spreading-assisted transmit diversity. IEEE Transactions on Wireless Communications, 4(3), 885–894.

    Article  Google Scholar 

  6. Wang, X., Yang, W., Tan, Z., & Cheng, S. (2005). Performance of space–time block-coded multicarrier DS-CDMA system in a multipath fading channel. In IEEE international symposium on microwave, antenna, propagation and EMC technologies for wireless communications, MAPE 2005 (Vol. 2, pp. 1551–1555).

  7. Weiping, X., & Milstein, L. B. (2001). On the performance of multicarrier RAKE systems. IEEE Transactions on Communications, 49(10), 1812–1823.

    Article  MATH  Google Scholar 

  8. Elnoubi, S. M., & Hashem A. A. (2008). Error rate performance of MC DS-CDMA systems over multiple-input-multiple-output Nakagami-m fading channel. In IEEE military communications conference, 2008. MILCOM 2008 (pp. 1–7).

  9. Yang, L.-L. (2008). Performance of multiantenna multicarrier direct-sequence code division multiple access using orthogonal variable spreading factor codes-assisted space–time spreading in time-selective fading channels. IET Communications, 2, 708–719.

    Article  Google Scholar 

  10. Peppas, K. P., Lazarakis, F., Zervos, T., Alexandridis, A., & Dangakis, K. (2010). Sum of non-identical independent squared ημ variates and applications in the performance analysis of DS-CDMA systems. IEEE Transactions on Wireless Communications, 9(9), 2718–2723.

    Article  Google Scholar 

  11. Yacoub, M. D. (2007). The κμ distribution and the ημ distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.

    Article  Google Scholar 

  12. Vanganuru, K., & Annamalai, A. (2002). Performance evaluation of transmit diversity concepts for WCDMA in multipath fading channels. In IEEE 56th vehicular technology conference, 2002. Proceedings. VTC 2002-Fall. 2002 (Vol. 1, pp. 568–572).

  13. James, O. M., Brahim, B. S., & Naufal, M. S. (2013). Capacity and error probability performance analysis for MIMO MC DS CDMA System in ηµ fading environment. International Journal of Electronics and Communications, 67, 269–281.

    Article  Google Scholar 

  14. Xu, F., & Li, G. (2005) Performance analysis of MQAM for MIMO WCDMA systems in fading channels. In 2005 international conference on communications, circuits and systems, 2005. Proceedings (Vol. 1, pp. 207–210).

  15. Annamalai, A., & Tellambura, C. (2001). Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals. IEEE Transactions on Communications, 49(1), 58–68.

    Article  MATH  Google Scholar 

  16. Scott, M., & Donald, C. (2012). Probability and random processes: With applications to signal processing and communications (2nd ed.). Burlington, VT: Elsevier Science.

    MATH  Google Scholar 

  17. Win, M. Z., Chrisikos, G., & Winters, J. H. (1999). Error probability for M-ary modulation in correlated Nakagami channels using maximal ratio combining. In 1999 IEEE military communications conference proceedings, 1999. MILCOM (Vol. 1, pp. 70–75).

  18. Asghari, V., da Costa, D. B., & Aissa, S. (2010). Symbol error probability of rectangular QAM in MRC systems with correlated ηµ fading channels. IEEE Transactions on Vehicular Technology, 59(3), 1497–1503.

    Article  Google Scholar 

  19. Gordon, L. S. (2011). Principles of mobile communication (3rd ed.). Berlin: Springer.

    Google Scholar 

  20. Emad, K. A., & Iman, M. S. (2001). Selection and MRC diversity for a DS/CDMA mobile radio system through Nakagami fading channels. Wireless Personal Communications, 16, 115–133.

    Article  Google Scholar 

  21. John G (1955) Distribution of the maximum of the arithmetic mean of correlated random variables. The Annal of Mathematical Statistics, 26(2), 294–300.

  22. Lombardo, P., Fedele, G., & Rao, M. M. (1999). MRC performance for binary signals in Nakagami fading with general branch correlation. IEEE Transactions on Communications, 47(1), 44–52.

    Article  Google Scholar 

  23. Alouini, M. S., Abdi, A., & Kaveh, M. (2001). Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels. IEEE Transactions on Vehicular Technology, 50(6), 1471–1480.

    Article  Google Scholar 

  24. Marvin, K. S., & Mohamed, S. A. (2005). Digital communications over fading channels (2nd ed.). London: Wiley.

    Google Scholar 

  25. Kuhn, V. (2006). Wireless communications over MIMO channels: Application to CDMA and multiple antennas systems. London: Wiley.

    Book  Google Scholar 

  26. John, G. P. (2001). Digital communications (4th ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  27. Lu, J., Tjhung, T. T., & Chai, C. C. (1998). Error probability performance of L-branch diversity reception of MQAM in Rayleigh fading. IEEE Transactions on Communications, 46(2), 179–181.

    Article  Google Scholar 

  28. Yen, R. Y. (2006). A general moment generating function for MRC diversity over gaussian gain fading channels. Tamkang Journal of Science and Engineering, 19(4), 353–356.

    Google Scholar 

  29. Li, Wei., Hao, Z., & Gulliver, T. A. (2006). Capacity and error probability analysis of orthogonal space-time block codes over correlated Nakagami fading channels. IEEE Transactions on Wireless Communications, 5(9), 2408–2412.

    Article  Google Scholar 

  30. Tolga, M. D., & Ali, G. (2007). Coding for MIMO communication systems. London: Wiley.

    MATH  Google Scholar 

  31. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products, 7th edn. New York: Academic Press.

  32. Yu, X., & Xu, D. (2010). Performance Analysis of space time coded CDMA system over Nakagami fading channels with perfect and imperfect CSI. Wireless Personal Communications, 62, 633–653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Osuru Mark Amok.

Appendices

Appendix 1

The MGF of the instantaneous SINR at the output of the RAKE receiver is derived in this appendix. The envelope (R) of the fading signal is modelled by ηµ fading distribution. Then, the random variable γ = ‖R 2‖ has the PDF of ηµ distribution. Hence, a set of NrMtULr variates of ηµ random variables is equivalent to a set of 2µ independent Gaussian random variable vectors with NrMtULr dimensions. Since the instantaneous signal to interference noise ratio is given as in (8a)

$$\gamma_{s} = \gamma_{c} \sum\limits_{n = 1}^{{N_{t} }} {\sum\limits_{m = 1}^{{M_{t} }} {\sum\limits_{j = 1}^{U} {\sum\limits_{l = 1}^{{L_{r} }} {\sum\limits_{i = 1}^{2\mu } {R_{nmjli}^{2} } } } } }$$
(49)

where \(R_{nmjli}^{2} = R_{nmjli}^{T} R_{nmjli} = X_{nmjli}^{T} X_{nmjli} + Y_{nmjli}^{T} Y_{nmjli}\), Xi1=nmjl = [Xi11, Xi12, …, Xi2µ]T where i 1  = nmjl = 1, 2, …, NrMtULr represent dependent inphase random variables. Hence, Xi1k are independent and identically distributed Gaussian random variables with zero mean and variance \(E[X_{i1k}^{2} ]\), k = 1, 2, …, 2µ. Similarly, Yi1=nmjl = [Yi11, Yi12, …, Yi12µ]T denote dependent quadrature random variables. Therefore, Yi1k are independent identically distributed Gaussian random variables with zero mean and variance \(E[Y_{i1k}^{2} ]\) [27]. Both are mutually independent Gaussian variables with \(E[X_{nmjli} ] = E[Y_{nmjli} ] = 0, E[X_{nmjli}^{2} ] = \rho_{x}^{2} , E[Y_{nmjli}^{2} ] = \rho_{y}^{2}\), µ is the number of clusters of multipath. Therefore, the instantaneous SINR can be rewritten as

$$\gamma_{s} = \gamma_{c} \sum\limits_{n = 1}^{{N_{r} }} {\sum\limits_{m = 1}^{{M_{t} }} {\sum\limits_{j = 1}^{U} {\sum\limits_{l = 1}^{{L_{r} }} {\sum\limits_{i = 1}^{2\mu } {X_{nmjli}^{2} } } } } } + \gamma_{c} \sum\limits_{n = 1}^{{N_{r} }} {\sum\limits_{m = 1}^{{M_{t} }} {\sum\limits_{j = 1}^{U} {\sum\limits_{l = 1}^{{L_{r} }} {\sum\limits_{i = 1}^{2\mu } {Y_{nmjli}^{2} } } } } }$$
(50)

Considering the inphase random variates \(X_{i1k}^{T} X_{i1k}\), similarly for quadrature random \(Y_{i1k}^{T} Y_{i1k}\). For the case of inphase random variates, we assume the arbitrary covariance matrix as Cxx, then we can form a scalar quadratic function of vector X, i.e., suppose \({\text{Z}} = {\mathbf{X}}_{nmli}^{T} B_{nmli} {\mathbf{X}}_{nmli}\), where Bnmli is a 2µ by 2µ matrix. Hence, the joint PDF of \([{\text{X}}_{\text{nmlil}}^{2} + {\text{X}}_{{{\text{nmli}}2}}^{2} + \cdots + X_{{{\text{nmli}}2\upmu}}^{2} ]\) is [16, 28]

$$f\left( {X_{nmli} } \right) = \frac{1}{{\sqrt {\left( {2\pi } \right)^{2\mu } \det \left( {C_{xx} } \right)} }} \, \exp \left( { - \frac{1}{2}X_{nmli}^{T} C_{nmli}^{ - 1} X_{nmli} } \right)$$
(51)

Then, the MGF of Z is

$$\begin{aligned} \Phi_{x} (s) & = E\left[ {e^{{ - sX_{nmli}^{T} B_{nmli} X_{nmli} }} } \right] = \int\limits_{0}^{\infty } {\frac{1}{{\sqrt {\left( {2\pi } \right)^{2\mu } \det \left( {C_{xx} } \right)} }}} {\text{ e}}^{{ - \frac{ 1}{ 2}\left( {X_{nmli}^{T} C_{xx}^{ - 1} X_{nmli} } \right)}} {\text{ e}}^{{ - sX_{nmli}^{T} B_{nmli} X_{nmli} }} {\text{dX}}_{\text{nmli}} \\ & = \int\limits_{0}^{\infty } {\frac{1}{{\sqrt {\left( {2\pi } \right)^{2\mu } \det \left( {C_{xx} } \right)} }}} {\text{ e}}^{{ - \frac{ 1}{ 2}\left( {X_{nmli}^{T} \left( {C_{xx}^{ - 1} + 2sB_{nmli} } \right)X_{nmli} } \right)}} {\text{ dX}}_{\text{nmli}} \\ & = \frac{{\sqrt {\left( {\det \left( {F^{ - 1} } \right)} \right)} }}{{\sqrt {\left( {\det \left( {C_{xx} } \right)} \right)} }} \, \int\limits_{ 0}^{\infty } {\frac{ 1}{{\sqrt {\left( { 2\pi } \right)^{2\mu } \left( {\det \left( F \right)} \right)} }}} {\text{ e}}^{{ - \frac{ 1}{ 2}X^{T} F^{ - 1} X}} {\text{ dX}} \\ & = \frac{1}{{\det \left( {I_{nmli} + 2sB_{nmli} Cxx} \right)^{\mu } }} \\ \end{aligned}$$
(52)

where det denotes determinant. Therefore, for NrMtULr diversity branches, we have

$$\Phi_{x} (s) = \prod\limits_{n = 1}^{{N_{r} }} {\prod\limits_{m = 1}^{{M_{t} }} {\prod\limits_{i = 1}^{U} {\prod\limits_{l = 1}^{{L_{r} }} {\frac{1}{{\det \left( {I_{nmil} + 2sB_{nmil} C_{xx}^{nmil} } \right)^{{\mu_{nmil} }} }}} } } }$$
(53)

Similarly, for Ynmil (quadrature Gaussian variates), we have

$$\Phi_{y} (s) = \prod\limits_{n = 1}^{{N_{r} }} {\prod\limits_{m = 1}^{{M_{t} }} {\prod\limits_{i = 1}^{U} {\prod\limits_{l = 1}^{{L_{r} }} {\frac{1}{{\det \left( {I_{nmil} + s2B_{nmil} D_{yy}^{nmil} } \right)^{{\mu_{nmil} }} }}} } } } ,$$
(54)

where D is the matrix. Therefore, overall MGF of instantaneous SINR at the RAKE receiver output is

$$\Phi_{x + y} (s) = \prod\limits_{n = 1}^{{N_{r} }} {\prod\limits_{m = 1}^{{M_{t} }} {\prod\limits_{i = 1}^{U} {\prod\limits_{l = 1}^{{L_{r} }} {\left( {\frac{1}{{\det \left( {I_{nmil} + 2sB_{nmil} C_{xx}^{nmil} } \right)^{{\mu_{nmil} }} \det \left( {I_{nmil} + 2sB_{nmil} D_{yy}^{nmil} } \right)^{{\mu_{nmil} }} }}} \right)} } } }$$
(55)

Appendix 2

In this appendix, we provide some hints for the solutions of (31), (36), (43), and (48), respectively. We consider

$$G_{1} = \int\limits_{0}^{\infty } {2Q\left( {\sqrt {2\gamma g} } \right)} \gamma^{i - 1} e^{ - \alpha \gamma } d\gamma = \int\limits_{0}^{\infty } {erfc\left( {\sqrt {g\gamma } } \right)} \gamma^{i - 1} e^{ - \alpha \gamma } d\gamma$$
(56)

Hence, we integrate using by parts

$$U = erfc\left( {\sqrt {g\gamma } } \right)\gamma^{i - 1} = \left( {\frac{2}{\sqrt \pi }\int\limits_{{\sqrt {g\gamma } }}^{\infty } {e^{{ - t^{2} }} } dt} \right)\gamma^{i - 1}$$

and dV = e αγ , then

$$dU = \left( { - \sqrt {\frac{g}{\pi }} \gamma^{i - 1.5} e^{ - g\gamma } + \left( {i - 1} \right)\gamma^{i - 2} erfc\left( {\sqrt {g\gamma } } \right)} \right)d\gamma$$

and \(V = - \frac{1}{\alpha }e^{ - \alpha \gamma }\), then

$$\frac{{\left( {i - 1} \right)}}{\alpha }\int\limits_{0}^{\infty } {\gamma^{i - 2} } erfc\left( {\sqrt {g\gamma } } \right)e^{ - \alpha \gamma } d\gamma - \sqrt {\frac{g}{{\pi \alpha^{2} }}} \int\limits_{0}^{\infty } {\gamma^{i - 1.5} } e^{{ - \left( {\alpha + g} \right)\gamma }} d\gamma .$$

We have to integrate the first integral by parts, yields

$$\begin{aligned} & \frac{{\left( {i - 1} \right)\left( {i - 2} \right)}}{{\alpha^{2} }}\int\limits_{0}^{\infty } {\gamma^{i - 3} } erfc\left( {\sqrt {g\gamma } } \right)e^{ - \alpha \gamma } d\gamma - \frac{{\left( {i - 1} \right)}}{{\alpha^{2} }}\sqrt {\frac{g}{\pi }} \int\limits_{0}^{\infty } {\gamma^{i - 2.5} } e^{{ - \left( {\alpha + g} \right)\gamma }} d\gamma \\ & \quad - \sqrt {\frac{g}{{\pi \alpha^{2} }}} \int\limits_{0}^{\infty } {\gamma^{i - 1.5} } e^{{ - \left( {\alpha + g} \right)\gamma }} d\gamma \\ \end{aligned}$$
(57)

Therefore, the last two integrals are obtained from [29, 30, 31, Eq. (3.371)], again applying successive integration by parts to first integral, the general solution is given as

$$G_{1} = \frac{{\left( {i - 1} \right)!}}{{\alpha^{i} }}\left[ {1 - \sqrt {\frac{g}{{\pi \left( {g + \alpha } \right)}}} \sum\limits_{l = 0}^{i - 1} {\frac{{\alpha^{l} \Gamma \left( {l + 0.5} \right)}}{{l!\left( {g + \alpha } \right)^{l} }}} } \right]$$
(58)

Next, we consider the integral given below

$$G_{2} = \int\limits_{0}^{\infty } {2Q^{2} } \left( {\sqrt {2g\gamma } } \right)\gamma^{i - 1} e^{ - \alpha \gamma } d\gamma = \int\limits_{0}^{\infty } {erfc^{2} } \left( {\sqrt {g\gamma } } \right)\gamma^{i - 1} e^{ - \alpha \gamma } d\gamma$$
(59)

Then, let \(z = \sqrt {g\gamma }\) and \(\gamma = z^{2} /g,{\text{ d}}\gamma {\text{ = 2zdz/g}}\), we have

$$G_{2} = \frac{2}{{g^{i} }}\int\limits_{0}^{\infty } {z^{2i - 1} } erfc^{2} \left( z \right)e^{{ - kz^{2} }} dz$$

where k = α/g, then integrating by parts

$$U = erfc^{2} \left( z \right), \quad dU = - \frac{4}{\sqrt \pi }erfc\left( z \right)e^{{ - z^{2} }} dz$$

and

$$dV = z^{2i - 1} e^{{ - kz^{2} }} dz, \quad V = \int {z^{2i - 1} } e^{{ - kz^{2} }} dz$$

Hence, from [31, Eq. (2.326.11)]

$$V = - \frac{{\left( {i - 1} \right)!}}{{k^{i} }}e^{{ - kz^{2} }} \sum\limits_{l = 0}^{i - 1} {\frac{{\left( {kz^{2} } \right)^{l} }}{l!}} ,$$

then the integral becomes

$$\frac{{\left( {i - 1} \right)!}}{{k^{i} }} - \frac{{4\left( {i - 1} \right)!}}{{\sqrt \pi k^{i} }}\sum\limits_{l = 0}^{i - 1} {\frac{{k^{l} }}{l!}} \int\limits_{0}^{\infty } {erfc\left( z \right)} e^{{ - \left( {1 + k} \right)z^{2} }} dz,$$

then considering the integral part

$$y = \left( {1 + k} \right)z^{2} ,\quad z = \sqrt {\frac{1}{1 + k}} y^{0.5} ,\quad dz = 0.5\sqrt {\frac{1}{k + 1}} y^{ - 0.5} dy$$

and putting

$$erfc\left( {\sqrt {A\gamma } } \right) = \frac{{\Gamma \left( {0.5,A\gamma } \right)}}{\sqrt \pi }$$

Then from [27, 32, 31, Eq. (6.455.1)], the solution is

$$G_{2} = \left( {\frac{g}{\alpha }} \right)^{i} \left( {i - 1} \right)!\left[ {1 - \frac{4}{\pi }\left( {\frac{g}{2g + \alpha }} \right)\sum\limits_{l = 0}^{i - 1} {\frac{{\alpha^{l} }}{{\left( {2l + 1} \right)\left( {2g + \alpha } \right)^{l} }} \, {}_{2}F_{1} \left( {1,l + 1;l + 1.5;\frac{g + \alpha }{2g + \alpha }} \right)} } \right]$$
(60)

Therefore, the expressions for G1 can be employed in (30), (35), while for both G1 and G2 in (42), and (47), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amok, J.O.M., Saad, N.M. Performance Analysis of Multiantenna MC DS CDMA System Over Correlated ηµ Multipath Fading Channels. Wireless Pers Commun 89, 539–568 (2016). https://doi.org/10.1007/s11277-016-3288-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3288-7

Keywords

Navigation