Skip to main content
Log in

Unequal Luby Transform Based on Block Weight Shift (ULT-BWS) for Error Resilient Video Transmission

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose an unequal Luby transform (LT) based on block weight shift (ULT-BWS) method as an unequal forward error correction method to minimize video distortion over packet-lossy networks. First, we consider unequal amount of error propagation effects from packet loss in hierarchical prediction structure to give unequal property in an LT codes. For robust video transmission over various channel status, the ULT-BWS method assigns an efficient amount of protection for frame blocks with different error propagation weights by controlling the range of more important blocks in a group of pictures. Simulation results demonstrate that the proposed ULT-BWS method gives robust performance and significantly improved video quality, compared with the conventional ULT schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmed, T., Hehaoua, A., Boutaba, R., & Iraqi, Y. (2005). Adaptive packet video streaming over IP networks. IEEE Journal on Selected Areas in Communications, 23(2), 385–405.

    Article  Google Scholar 

  2. Stuhlmuller, K., Farber, N., Link, M., & Girod, B. (2000). Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications, 18(6), 1012–1032.

    Article  Google Scholar 

  3. Cavusoglu, B., Schonfeld, D., Ansari, R., & Peepak, D. (2005). Real-time low complexity adaptive approach for enhanced OoS and error resilience in MPEG-2 video transport over RTP networks. IEEE Transactions on Circuits and Systems for Video Technology, 15(11), 1604–1614.

    Article  Google Scholar 

  4. Shi, Y., Wu, C., & du, J. (2007). A novel unequal loss protection approach for salable video streaming over wireless networks. IEEE Transactions on Consumer Electronics, 53(2), 363–368.

    Article  Google Scholar 

  5. Wang, Y., Fang, T., Chau, L., & Yap, K. (2007). Two-dimensional channel coding scheme for MCTF-based scalable video coding. IEEE Transactions on Multimedia, 9(1), 37–45.

    Article  Google Scholar 

  6. Ha, H., & Yim, C. (2008). Layer-weighted unequal error protection for scalable video coding extension of H.264/AVC. IEEE Transactions on Consumer Electronics, 54(2), 736–744.

    Article  Google Scholar 

  7. Yu, X., Modestino, J. W., Kurceren, R., & Chan, Y. S. (2008). A model-based approach to evaluation of the efficacy of FEC coding in combating network packet losses. IEEE/ACM Transactions on Networking, 16(3), 628–641.

    Article  Google Scholar 

  8. Jiaying, L., Yongjin, C., Zongming, G., & Kuo, J. (2010). Bit allocation for spatial scalability coding of H.264/SVC with dependent rate-distortion analysis. IEEE Transactions on Circuits and Systems for Video Technology, 20(7), 967–981.

    Article  Google Scholar 

  9. Ming-Fong, T., Naveen, C., & Chilamkurti, N. (2011). An adaptive packet and block length forward error correction for video streaming over wireless networks. Wireless Personal Communications, 56(3), 435–446.

    Article  Google Scholar 

  10. Yongkai, H., El-Hajjar, M., Maunder, R. G., & Hanzo, L. (2014). Layered wireless video relying on minimum-distortion inter-layer FEC coding. IEEE Transactions on Multimedia, 16(3), 697–710.

    Article  Google Scholar 

  11. Jiyan, W., Bo, C., Chau, Y., Yanlei, S., & Junliang, C. (2015). Distortion-aware concurrent multipath transfer for mobile video streaming in heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 14(4), 688–701.

    Article  Google Scholar 

  12. Luby, M. (2002). LT-codes. In Proceedings of 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 271–280.

  13. Shokrollahi, A. (2006). Raptor-codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.

    Article  MathSciNet  MATH  Google Scholar 

  14. Luby, M., Shokrollahi, A., Watson, M., & Stockhammer, T. (2007). Raptor forward error correction for object delivery. Network Working Group, RFC5053.

  15. Rahnavard, N., Vellambi, B. N., & Fekri, F. (2007). Rateless codes with unequal error protection property. IEEE Transactions on Information Theory, 53(4), 1521–1532.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, D., Liang, J., & Singh, I. (2013). Fast transmission distortion estimation and adaptive error protection for H.264/AVC-based embedded video conferencing systems. Signal Processing: Image Communication, 28(5), 417–429.

    Google Scholar 

  17. Vukobratovic, D., Stankovic, V., Sejdinovic, D., Stankovic, L., & Xiong, Z. (2009). Scalable video multicast using expanding window fountain codes. IEEE Transactions on Multimedia, 11(6), 1094–1104.

    Article  Google Scholar 

  18. Hamzaoui, R., Stankovic, V., & Xiong, Z. (2005). Optimized error protection of scalable image bitstream. IEEE Signal Processing Magazine, 22(6), 91–107.

    Article  Google Scholar 

  19. Namjoo, E., Aghagolzadeh, A., & Museviniya, J. (2011). Robust transmission of scalable video stream using modified LT codes. Computers and Electrical Engineering, 37(5), 768–781.

    Article  Google Scholar 

  20. Namjoo, E., Aghagolzadeh, A., & Museviniya, J. (2013). A new rateless code with unequal error protection property. Computers and Electrical Engineering, 39(7), 1980–1992.

    Article  Google Scholar 

  21. Wang, Y., & Rongke, L. (2015). Enhanced unequal error protection coding scheme of Luby transform codes. IET Communications, 9(1), 33–41.

    Article  Google Scholar 

  22. Congchong, R., Liuguo, Y., Jianhua, L., & Chang, W. C. (2007). UEP video trans-mission based on dynamic resource allocation in MIMO OFDM system. IEEE Wireless Communications and Networking Conference. doi:10.1109/WCNC.2007.63.

    Google Scholar 

  23. H.264/AVC Software Coordination. http://iphome.hhi.de/suehring/tml/index.htm.

  24. Zorzi, M., Rao, R. R., & Milstein, L. B. (1995). On the accuracy of a first-order Markov model for data transmission on fading channels. Fourth IEEE International Conference on Universal Personal Communications, 211–215.

  25. NS-3 Network Simulator. http://www.nsnam.org/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhoon Yim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, H., Yim, C. Unequal Luby Transform Based on Block Weight Shift (ULT-BWS) for Error Resilient Video Transmission. Wireless Pers Commun 89, 1103–1121 (2016). https://doi.org/10.1007/s11277-016-3307-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3307-8

Keywords

Navigation