Skip to main content

Advertisement

Log in

Optimal Data Transmission Strategy for Healthcare-Based Wireless Sensor Networks: A Stochastic Differential Game Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As the development of information and communication technology (ICT) and the affirmation of the importance of healthcare, using wireless sensor networks (WSNs) is a promising approach to assist modern medical practices. The transmission optimization of HWSNs is an issue worth studying deeply, which is facing challenges such as data diversity, real-time requirement, reliable transmission, dynamic environment and so on. This paper considers four kinds of transmission cost comprehensively, and adopts the stochastic differential game theory to discuss this issue. With the objective of minimizing the transmission cost, three kinds of game models are constructed, i.e., cooperative model, partial cooperative model and non-cooperative model. The optimal transmission strategies under different game modes are obtained for HWSNs. The numerical simulation compares three strategies and verifies the validity of the method present in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Winter, A., Haux, R., Ammenwerth, E., et al. (2011). Health information systems: Architectures and strategies. New York: Springer.

    Book  Google Scholar 

  2. Abreu, C., Ricardo, M., & Mendes, P. M. (2014). Energy-aware routing for biomedical wireless sensor networks. Journal of Network and Computer Applications, 40, 270–278.

    Article  Google Scholar 

  3. Chen, M., Gonzalez, S., Vasilakos, A., et al. (2011). Body area networks: A Survey. Mobile Networks and Applications, 16(2), 171–193.

    Article  Google Scholar 

  4. Yuce, M. R. (2010). Implementation of wireless body area networks for healthcare systems. Sensors and Actuators, A: Physical, 162(1), 116–129.

    Article  MathSciNet  Google Scholar 

  5. Kim, Y., Cho, K., Cho, H., et al. (2014). A cross-layer channel access and routing protocol for medical-grade QoS support in wireless sensor networks. Wireless Personal Communications, 77(1), 309–328.

    Article  Google Scholar 

  6. Kateretse, C., Lee, G., & HuhPages, E. (2013). A practical traffic scheduling scheme for differentiated services of healthcare systems on wireless sensor networks. Wireless Personal Communications, 71(2), 909–927.

    Article  Google Scholar 

  7. Ko, J.G., Lim, J.H., Chen, Y., et al. (2010). MEDiSN: Medical emergency detection in sensor networks. ACM Transactions on Embedded Computing Systems, 10(1), 1–28.

  8. Jiang, S., Cao, Y., Iyengar, S., et al. (2008). CareNet: an integrated wireless sensor networking environment for remote healthcare. In Proceedings of the ICST 3rd international conference on Body area networks.

  9. Gao, T., Massey, T., Selavo, L., et al. (2007). The advanced health and disaster aid network: A light-weight wireless medical system for triage. IEEE Transactions on Biomedical Circuits and Systems, 1(3), 203–216.

    Article  Google Scholar 

  10. Yi, S., Heo, J., Cho, Y., et al. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14–15), 2842–2852.

    Article  Google Scholar 

  11. Street, A., Moreira, A., & Arroyo, J. M. (2014). Energy and reserve scheduling under a joint generation and transmission security criterion: An adjustable robust optimization approach. IEEE Transactions on Power Systems, 29(1), 3–14.

    Article  Google Scholar 

  12. Alkhdour, T., Shakshuki, E., Baroudi, U., et al. (2015). A cross layer optimization modeling for a periodic WSN application. Journal of Computer and System Sciences, 81(3), 516–532.

    Article  MATH  Google Scholar 

  13. Abrardo, A., Balucanti, L., & Mecocci, A. (2013). A game theory distributed approach for energy optimization in WSNs. ACM Transactions on Sensor Networks, 9(4), 1–22.

    Article  Google Scholar 

  14. He, S., Chen, J., Yau, D. K., & Sun, Y. (2012). Cross-layer optimization of correlated data gathering in wireless sensor networks. IEEE Transactions on Mobile Computing, 11(11), 1678–1691.

    Article  Google Scholar 

  15. Viswanathan, H., Chen, B., & Pompili, D. (2012). Research challenges in computation, communication, and context awareness for ubiquitous healthcare. IEEE Communications Magazine, 50(5), 92–99.

    Article  Google Scholar 

  16. Mesbah, W., Shaqfeh, M., & Alnuweiri, H. (2014). Jointly optimal rate and power allocation for multilayer transmission. IEEE Transactions on Wireless Communications, 13(2), 834–845.

    Article  Google Scholar 

  17. Lin, Y., & Yu, W. (2012). Fair scheduling and resource allocation for wireless cellular network with shared relays. IEEE Journal on Selected Areas in Communications, 30(8), 1530–1540.

    Article  Google Scholar 

  18. Tachwali, Y., Lo, B. F., Akyildiz, I. F., et al. (2013). Multiuser resource allocation optimization using bandwidth-power product in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(3), 451–463.

    Article  Google Scholar 

  19. Gong, X., Vorobyov, S. A., & Tellambura, C. (2011). Joint bandwidth and power allocation with admission control in multi-user networks with and without relaying. IEEE Transactions on Signal Processing, 59(4), 1801–1813.

    Article  MathSciNet  Google Scholar 

  20. Yeung, D. W. K., & Petrosyan, L. A. (2005). Cooperative stochastic differential games. New York: Springer.

    MATH  Google Scholar 

  21. Hu, J., & Xie, Y. (2015). A stochastic differential game theoretic study of multipath routing in heterogeneous wireless networks. Wireless Personal Communications, 80(3), 971–991.

    Article  Google Scholar 

  22. Xu, H., Zhou, X., & Chen, Y. (2013). A differential game model of automatic load balancing in LTE networks. Wireless Personal Communications, 71(1), 165–180.

    Article  MathSciNet  Google Scholar 

  23. Zhou, X., Cheng, Z., Ding, Y., et al. (2012). A optimal power control strategy based on network wisdom in wireless networks. Operations Research Letters, 40(6), 475–477.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, L., Wang, A., Zhou, X., et al. (2012). Noncooperative differential game based efficiency-aware traffic assignment for multipath routing in CRAHN. Wireless Personal Communications, 62(2), 443–454.

    Article  Google Scholar 

  25. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.

    Article  MathSciNet  Google Scholar 

  26. Verma, V. K., Singh, S., & Pathak, N. P. (2014). Analysis of scalability for AODV routing protocol in wirelesssensor networks. Optik-International Journal for Light and Electron Optics, 125(2), 748–750.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Special Fund for Basic Scientific Research Business of Central Public Research Institutes, Institute of Medical Information, Chinese Academy of Medical Sciences (“Research on the Long-term Preservation Strategy of Medical Digital Resources”, Grant No. 15R0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Fang.

Appendices

Appendix 1: Solution for the Cooperative Game Model (6)–(10)

Solution Let

$$\pi_{i} = \left( {\eta + \omega } \right)r_{i} - \omega ,$$
(22)

and

$$\lambda_{i} = \left( {1 + \beta + \gamma } \right) - \left( {\beta + \gamma c_{i} } \right)r_{i} .$$
(23)

Differentiating the r.h.s. of (12) with respect to \(v_{i} \left( t \right)\) and equating it to zero leads to the following optimal strategy

$$v_{i}^{G} = \left[ {{{\pi_{i} } \mathord{\left/ {\vphantom {{\pi_{i} } {\left( {\alpha \lambda_{i} } \right)}}} \right. \kern-0pt} {\left( {\alpha \lambda_{i} } \right)}}} \right] \cdot F^{\prime}\left( {G,s,t} \right).$$
(24)

Let

$$\theta_{i} = {{\pi_{i} } \mathord{\left/ {\vphantom {{\pi_{i} } {\left( {\alpha \lambda_{i} } \right)}}} \right. \kern-0pt} {\left( {\alpha \lambda_{i} } \right)}}.$$
(25)

Then, (22) can be simplified as

$$v_{i}^{G} = \theta_{i} F^{\prime}\left( {G,s,t} \right) .$$
(26)

Substituting (26) into (12) gives

$$\begin{aligned} \rho F\left( {G,s,t} \right) & = \hbox{min} \left\{ {\sum\limits_{i \in G} {\left( {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left[ {\theta_{i} F^{\prime}\left( {G,s,t} \right)} \right]^{2} \left[ {1 + \beta \left( {1 - r_{i} } \right) + \gamma \left( {1 - c_{i} } \right)r_{i} } \right] + \omega s\left( t \right)} \right)} } \right. \\ & \left. \quad + \,F^{\prime}\left( {G,s,t} \right) \,{ \times \,\left[ {\mu s(t) - \eta \sum\limits_{i \in G} {r_{i} \left[ {\theta_{i} F^{\prime}\left( {G,s,t} \right)} \right]} + \omega \sum\limits_{i \in G} {\left( {1 - r_{i} } \right)\left[ {\theta_{i} F^{\prime}\left( {G,s,t} \right)} \right]} } \right]} \right\}. \\ \end{aligned}$$
(27)

Since \(F\left( {G,s,t} \right)\) is a liner function, differentiating it with respect to \(s\left( t \right)\) leads to

$$F^{\prime}\left( {G,s,t} \right) = {{n\omega } \mathord{\left/ {\vphantom {{n\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}.$$
(28)

Substituting (28) into (26) gives the optimal transmission rate allocation strategy, that is,

$$v_{i}^{G} = {{n\omega \theta_{i} } \mathord{\left/ {\vphantom {{n\omega \theta_{i} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}.$$
(15)

Arranging (12), there is

$$\begin{aligned} F\left( {G,s,t} \right)\; & = \rho^{ - 1} \left\{ {\sum\limits_{i \in G} {\left( {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left( {v_{i}^{G} } \right)^{2} + \beta \left( {1 - r_{i} } \right)\left[ {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left( {v_{i}^{G} } \right)^{2} } \right]} \right.} } \right. \\ & \quad \left. { +\,\gamma \left( {1 - c_{i} } \right)p_{i} \left[ {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left( {v_{i}^{G} } \right)^{2} } \right] + \omega s^{G} } \right) + {{n\omega } \mathord{\left/ {\vphantom {{n\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}} \\ & \left. \quad { \times \left[ {\mu s^{G} + \sum\limits_{i \in G} {\left[ {\omega \left( {1 - r_{i} } \right) - \eta r_{i} } \right]v_{i}^{G} } } \right]} \right\} \\ & = \rho^{ - 1} \left\{ {\sum\limits_{i \in G} {\left( {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left( {v_{i}^{G} } \right)^{2} \left[ {1 + \beta \left( {1 - r_{i} } \right) + \gamma \left( {1 - c_{i} } \right)r_{i} } \right] + \omega s^{G} } \right)} + {{n\omega } \mathord{\left/ {\vphantom {{n\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right. \\ & \left. \quad { \times \left( {\mu s^{G} - \sum\limits_{i \in G} {\left[ {\left( {\omega + \eta } \right)r_{i} - \omega } \right]v_{i}^{G} } } \right)} \right\} \\ & = \rho^{ - 1} \left\{ {\sum\limits_{i \in G} {\left[ {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left( {v_{i}^{G} } \right)^{2} \lambda_{i} + \omega s^{G} } \right]} + {{n\omega } \mathord{\left/ {\vphantom {{n\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}} \times \left( {\mu s^{G} - \sum\limits_{i \in G} {\pi_{i} v_{i}^{G} } } \right)} \right\}. \\ \end{aligned}$$
(29)

Substituting (15) into (29) gives

$$\begin{aligned} F\left( {G,s,t} \right)\, & = \rho^{ - 1} \left\{ {\sum\limits_{i \in G} {\left( {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left[ {{{n\omega \theta_{i} } \mathord{\left/ {\vphantom {{n\omega \theta_{i} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]^{2} \lambda_{i} + \omega s^{G} } \right)} } \right. \\ & \left. {\quad +\,{{n\omega } \mathord{\left/ {\vphantom {{n\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}} \times \left( {\mu s^{G} - \sum\limits_{i \in G} {\pi_{i} \left[ {{{n\omega \theta_{i} } \mathord{\left/ {\vphantom {{n\omega \theta_{i} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]} } \right)} \right\}. \\ \end{aligned}$$
(30)

Then, the minimized cost is got as

$$F\left( {G,s,t} \right) = \left[ {{{n\omega } \mathord{\left/ {\vphantom {{n\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]^{2} \left\{ { - \left( {2\rho } \right)^{ - 1} \sum\limits_{i \in G} {\pi_{i} \theta_{i} } + \left( {n\omega } \right)^{ - 1} \left( {\rho - \mu } \right)s^{G} } \right\} .$$
(16)

This completes the solution of the cooperative game model (6)–(10).

Appendix 2: Solution for the Non-Cooperative Game Model (7)–(10)

Solution Differentiating the r.h.s. of (13) with respect to \(v_{i} \left( t \right)\) and equating it to zero leads to the following optimal strategy

$$v_{i}^{N} = \theta_{i} F^{\prime}\left( {N,s,t} \right).$$
(31)

Substituting (31) into (13) gives

$$\begin{aligned} \rho F\left( {N,s,t} \right)\, & = {\text{min}}\left\{ {\left( {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left[ {\theta_{i} F^{\prime}\left( {N,s,t} \right)} \right]^{2} \left[ {1 + \beta \left( {1 - r_{i} } \right) + \gamma \left( {1 - c_{i} } \right)r_{i} } \right]+ \omega s\left( t \right)} \right)} \right. \\ & \left. \quad {+\,F^{\prime}\left( {N,s,t} \right) \times \left[ {\mu s(t) - \eta \sum\limits_{i \in N} {r_{i} \left[ {\theta_{i} F^{\prime}\left( {N,s,t} \right)} \right]} + \omega \sum\limits_{i \in N} {\left( {1 - r_{i} } \right)\left[ {\theta_{i} F^{\prime}\left( {N,s,t} \right)} \right]} } \right]} \right\}. \\ \end{aligned}$$
(32)

Since \(F\left( {N,s,t} \right)\) is a liner function, differentiating it with respect to \(s\left( t \right)\) leads to

$$F^{\prime}\left( {N,s,t} \right) = {\omega \mathord{\left/ {\vphantom {\omega {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}.$$
(33)

Substituting (33) into (31) gives the optimal transmission rate allocation strategy, that is,

$$v_{i}^{N} = {{\omega \theta_{i} } \mathord{\left/ {\vphantom {{\omega \theta_{i} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}.$$
(18)

Arranging (13), there is

$$F\left( {N,s,t} \right) = \rho^{ - 1} \left\{ {\left[ {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left( {v_{i}^{N} } \right)^{2} \lambda_{i} +\omega s^{N} } \right] + {{n\omega } \mathord{\left/ {\vphantom {{n\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}} \times \left( {\mu s^{N} - \sum\limits_{i \in N} {\pi_{i} v_{i}^{N} } } \right)} \right\}.$$
(34)

Substituting (18) into (34) gives

$$\begin{aligned} F\left( {N,s,t} \right)\, & = \rho^{ - 1} \left\{ {\left( {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left[ {{{\omega \theta_{i} } \mathord{\left/ {\vphantom {{\omega \theta_{i} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]^{2} \lambda_{i} +\omega s^{N} } \right)} \right. \\ & \quad \left. { + \,{\omega \mathord{\left/ {\vphantom {\omega {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}} \times \left( {\mu s^{N} - \sum\limits_{i \in N} {\pi_{i} \left[ {{{\omega \theta_{i} } \mathord{\left/ {\vphantom {{\omega \theta_{i} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]} } \right)} \right\}. \\ \end{aligned}$$
(35)

Then, the minimized cost is got as

$$\begin{aligned} F\left( {N,s,t} \right) & = \left[ {{\omega \mathord{\left/ {\vphantom {\omega {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]^{2} \\ & \quad \times \left\{ { - \left( {2\rho } \right)^{ - 1} \pi_{i} \psi_{i} - \left( \rho \right)^{ - 1} \sum\limits_{j \in N,j \ne i} {\pi_{j} \psi_{j} } + \omega^{ - 1} \left( {\rho - \mu } \right)s^{N} } \right\}.\end{aligned}$$
(19)

This completes the solution of the non-cooperative game model (7)–(10).

Appendix 3: Solution for the Partial Cooperative Game Model (8)–(10)

Differentiating the r.h.s. of (14) with respect to \(v_{i} \left( t \right)\) and equating it to zero leads to the following optimal strategy

$$v_{i}^{K} = \theta_{i} F^{\prime}\left( {K,s,t} \right) .$$
(36)

Substituting (36) into (14) gives

$$\begin{aligned} \rho F\left( {K,s,t} \right)\, & = {\text{min}}\left\{ {\sum\limits_{i \in K} \left( {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left[ {\theta_{i} F^{\prime}\left( {K,s,t} \right)} \right]^{2} \left[ {1 + \beta \left( {1 - r_{i} } \right) + \gamma \left( {1 - c_{i} } \right)r_{i} } \right]+\omega s\left( t \right)} \right)} \right. \\ & \quad \left. +\,{F^{\prime}\left( {K,s,t} \right) \times \left[ {\mu s(t) - \eta \sum\limits_{i \in K} {r_{i} \left[ {\theta_{i} F^{\prime}\left( {K,s,t} \right)} \right]} + \omega \sum\limits_{i \in K} {\left( {1 - r_{i} } \right)\left[ {\theta_{i} F^{\prime}\left( {K,s,t} \right)} \right]} } \right]} \right\}. \\ \end{aligned}$$
(37)

Since \(F\left( {K,s,t} \right)\) is a liner function, differentiating it with respect to \(s\left( t \right)\) leads to

$$F^{\prime}\left( {K,s,t} \right) = {{k\omega } \mathord{\left/ {\vphantom {{k\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}.$$
(38)

Substituting (38) into (36) gives the optimal transmission rate allocation strategy, that is,

$$v_{j}^{K} = {{k\omega \theta_{j} } \mathord{\left/ {\vphantom {{k\omega \theta_{j} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}.$$
(20)

Arranging (14), there is

$$F\left( {K,s,t} \right) = \rho^{ - 1} \left\{ {\sum\limits_{j \in K} {\left[ {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left( {v_{j}^{K} } \right)^{2} \lambda_{j} +\omega s^{K} } \right]} + {{k\omega } \mathord{\left/ {\vphantom {{k\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}} \times \left( {\mu s^{K} - \sum\limits_{j \in K} {\pi_{j} v_{j}^{K} } } \right)} \right\}.$$
(39)

Substituting (20) into (39) gives

$$\begin{aligned} F\left( {K,s,t} \right)\, & = \rho^{ - 1} \left\{ {\sum\limits_{i \in K} {\left( {\left( {{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. \kern-0pt} 2}} \right)\left[ {{{k\omega \theta_{i} } \mathord{\left/ {\vphantom {{k\omega \theta_{i} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]^{2} \lambda_{i} +\omega s^{K} } \right)} } \right. \\ & \left. \quad +\,{ {{k\omega } \mathord{\left/ {\vphantom {{k\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}} \times \left( {\mu s^{K} - \sum\limits_{i \in G} {\pi_{i} \left[ {{{k\omega \theta_{i} } \mathord{\left/ {\vphantom {{k\omega \theta_{i} } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]} } \right)} \right\}. \\ \end{aligned}$$
(40)

Then, the minimized cost is got as

$$\begin{aligned} F\left( {K,s,t} \right)\, & = \left[ {{{k\omega } \mathord{\left/ {\vphantom {{k\omega } {\left( {\rho - \mu } \right)}}} \right. \kern-0pt} {\left( {\rho - \mu } \right)}}} \right]^{2} \\ & \quad\times \left\{ { - \left( {2\rho } \right)^{ - 1} \sum\limits_{i \in K} {\pi_{i} \theta_{i} } - \left( \rho \right)^{ - 1} \sum\limits_{i \in G\backslash K} {\pi_{i} \theta_{i} } + \left( {k\omega } \right)^{ - 1} \left( {\rho - \mu } \right)s^{K} } \right\}. \\ \end{aligned}$$
(21)

This completes the solution of the partial cooperative game model (8), (9), (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Qian, Q., Fang, A. et al. Optimal Data Transmission Strategy for Healthcare-Based Wireless Sensor Networks: A Stochastic Differential Game Approach. Wireless Pers Commun 89, 1295–1313 (2016). https://doi.org/10.1007/s11277-016-3316-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3316-7

Keywords