Skip to main content
Log in

Robust Signal-to-Noise Ratio Estimation in Non-Gaussian Noise Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Signal-to-noise ratio (SNR) estimation available in the literature are designed based on the assumption of Gaussian noise models. These estimators may produce misleading results when the distribution of the noise deviates from Gaussian. This paper investigates the performance of existing SNR estimators in an additive non-Gaussian noise channel based on a Gaussian mixture model. An expectation–maximization (EM) based approach is proposed for optimum SNR estimation in the non-Gaussian noise channel. In addition, the Cramer–Rao bound is derived and used as a benchmark to assess the performance of the SNR estimators. Simulation results confirm the optimality and robustness of the proposed EM-based estimator in Gaussian and non-Gaussian noise channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yucek, T., & Arslan, H. (2007). MMSE noise plus interference power estimation in adaptive OFDM systems. IEEE Transactions on Vehicular Technology, 56(6), 3857–3863.

    Article  Google Scholar 

  2. Brennan, D. G. (2003). Linear diversity combining techniques. Proceedings of the IEEE, 91, 331–356.

    Article  Google Scholar 

  3. Pauluzzi, D. R., & Beaulieu, N. C. (2000). A comparison of SNR estimation techniques for the AWGN channel. IEEE Transactions on Communications, 48(10), 1681–1691.

    Article  Google Scholar 

  4. Gao, P., & Tepeledenlioglu, C. (2004). SNR estimation for non-constant modulus constellations. IEEE Wireless Communications and Networking Conference, 1, 24–29.

    Google Scholar 

  5. Das, A. (2008). NDA SNR estimation: CRLBs and EM based estimators. TENCON 2008–2008 IEEE Region 10 Conference (pp. 1–6).

  6. Middleton, D. (1973). Man-made noise in urban environments and transportation systems: Models and measurements. IEEE Transactions on Communications, 21(11), 1232–1241.

    Article  Google Scholar 

  7. Kozick, R. J., & Sadler, B. M. (2000). Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures. IEEE Transactions on Signal Processing, 48(12), 3520–3535.

    Article  MathSciNet  Google Scholar 

  8. Lo, Y. S., Lim, H. S., & Tan, A. W. C. (2011). Performance comparison of SNR estimators in Gaussian Mixture Noise. IEEE International Conference on Signal and Image Processing Applications, 2011, 327–331.

    Google Scholar 

  9. Vastola, K. S. (1984). Threshold detection in narrow-band non-Gaussian noise. IEEE Transactions on Communications, 32(2), 134–139.

    Article  Google Scholar 

  10. Aazhang, B., & Poor, H. V. (1987). Performance of DS/SSMA communications in impulsive channels—Part I: Linear correlation receivers. IEEE Transactions on Communications, 35(11), 1179–1188.

    Article  Google Scholar 

  11. Wang, X., & Poor, H. V. (1999). Robust multiuser detection in non-Gaussian channels. IEEE Transactions on Signal Processing, 47(2), 289–305.

    Article  Google Scholar 

  12. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 1, 1–38.

    MathSciNet  MATH  Google Scholar 

  13. Kay, S. M. (1993). Fundamentals of statistical signal processing, estimation theory. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Siew Lo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, YS., Lim, HS. & Tan, A.WC. Robust Signal-to-Noise Ratio Estimation in Non-Gaussian Noise Channel. Wireless Pers Commun 91, 561–575 (2016). https://doi.org/10.1007/s11277-016-3477-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3477-4

Keywords

Navigation