Skip to main content

Advertisement

Log in

QoE-Energy Aware Opportunistic Interference Scaling in Dense Heterogeneous Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Future wireless networks are expected to be heterogeneous with dense deployed small cells to achieving an unprecedented system capacity. In the dense deployment scenario, interference manifests new feature and tend to be more bursty. Bursty interference leads to drastic variation of signal to interference and noise ratio (SINR) and hence affects users’ quality of experience (QoE). Generally, power control is utilized to compensate the SINR variation, which is energy-inefficient in the dense and complex network scenario. Therefore this paper focuses on the bursty interference management. An overview of existing SINR based power control techniques is firstly present. Then an network-level mechanism termed as opportunistic interference scaling (OIS) is proposed to efficiently smooth the bursty interference by decreasing the transmit rate of co-channel bursty, user driven (BUD) traffic. In addition, based on the proposed QoE model, a QoE aware energy efficiency metric is introduced to study the trade-off between QoE and energy consumption when adopting OIS. A QoE-Energy aware optimization problem is further formulated and the modified particle swarm algorithm is used to solve it. Numerical results show that the proposed QoE-energy aware OIS can smooth the link variation, and guarantee the target quality level with less power consumption at the cost of negligible QoE degradation for BUD traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 3GPP, TR 36.912, v11.0.0. (2012). Feasibility study for further advancements for E-UTRA (LTE-Advanced) .

  2. 3GPP, TS 36.300. (2014). Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network.

  3. Chandrasekhar, V., Andrews, J. G., Muharemovict, T., Zukang, S., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328. doi:10.1109/TWC.2009.081386.

    Article  Google Scholar 

  4. Cheng-Xiang, W., Haider, F., Xiqi, G., Xiao-Hu, Y., Yang, Y., Dongfeng, Y., et al. (2014). Cellular architecture and key technologies for 5g wireless communication networks. IEEE Communications Magazine, 52(2), 122–130. doi:10.1109/MCOM.2014.6736752.

    Article  Google Scholar 

  5. Egger, S., Hossfeld, T., Schatz, R., Fiedler, M. (2012). Waiting times in quality of experience for web based services. In Quality of Multimedia Experience (QoMEX), 2012 Fourth International Workshop (pp. 86–96). doi:10.1109/QoMEX.2012.6263888.

  6. Enderes, T., Khoo, S. C., Somerville, C. A., & Samaras, K. (2002). Impact of statistical multiplexing on voice quality in cellular networks. Letters in Mathematical Physics, 55(1), 153–161.

    Google Scholar 

  7. Fiedler, M., Hossfeld, T., & Tran-Gia, P. (2010). A generic quantitative relationship between quality of experience and quality of service. IEEE Network, 24(2), 36–41. doi:10.1109/MNET.2010.5430142.

    Article  Google Scholar 

  8. Haijun, Z., Chunxiao, J., Beaulieu, N. C., Xiaoli, C., Xiangming, W., & Meixia, T. (2014). Resource allocation in spectrum-sharing ofdma femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377. doi:10.1109/TCOMM.2014.2328574.

    Article  Google Scholar 

  9. Ji-Hoon, Y., & Shin, K. G. (2011). Adaptive interference management of ofdma femtocells for co-channel deployment. IEEE Journal on Selected Areas in Communications, 29(6), 1225–1241. doi:10.1109/JSAC.2011.110610.

    Article  Google Scholar 

  10. Kucera, S., Aissa, S., & Yoshida, S. (2010). Adaptive channel allocation for enabling target sinr achievability in power-controlled wireless networks. IEEE Transactions on Wireless Communications, 9(2), 833–843. doi:10.1109/TWC.2010.02.090574.

    Article  Google Scholar 

  11. Madan, R., Borran, J., Sampath, A., Bhushan, N., Khandekar, A., & Ji, T. (2010). Cell association and interference coordination in heterogeneous lte-a cellular networks. IEEE Journal on Selected Areas in Communications, 28(9), 1479–1489. doi:10.1109/JSAC.2010.101209.

    Article  Google Scholar 

  12. Monemi, M., Asli, A., Haghighi, S., & Rasti, M. (2013). Distributed multiple target-sinrs tracking power control in wireless multirate data networks. IEEE Transactions on Wireless Communications, 12(4), 1850–1859. doi:10.1109/TWC.2013.021213.121078.

    Article  Google Scholar 

  13. Monserrat, J., Fallgren, M. (2013). Deliverable d6. 1 simulation guidelines. METIS.

  14. Phatak, S., & Rao, S. S. (1995). Logistic map: A possible random-number generator. Physical review E, 51(4), 3670.

    Article  Google Scholar 

  15. Rasti, M., Sharafat, A., & Zander, J. (2010). A distributed dynamic target-sir-tracking power control algorithm for wireless cellular networks. IEEE Transactions on Vehicular Technology, 59(2), 906–916. doi:10.1109/TVT.2009.2035627.

    Article  Google Scholar 

  16. Rec, I. (1996). P. 800: Methods for subjective determination of transmission quality. International Telecommunication Union, Geneva.

  17. Reichl, P., Egger, S., Schatz, R., D’Alconzo, A. (2010). The logarithmic nature of QoE and the role of the Weber-Fechner Law in QoE assessment. In Communications (ICC), 2010 IEEE International Conference (pp. 1–5). doi:10.1109/ICC.2010.5501894.

  18. Rugelj, M., Sedlar, U., Volk, M., Sterle, J., Hajdinjak, M., & Kos, A. (2014). Novel cross-layer qoe-aware radio resource allocation algorithms in multiuser ofdma systems. IEEE Transactions on Communications, 62(9), 3196–3208. doi:10.1109/TCOMM.2014.2347288.

    Article  Google Scholar 

  19. Sedlaczek, K., Eberhard, P. (2005). Constrained particle swarm optimization of mechanical systems. In Proceedings of the 6th WCSMO, Rio de Janeiro, Brazil.

  20. Sedlaczek, K., & Eberhard, P. (2007). Augmented lagrangian particle swarm optimization in mechanism design. Journal of System Design and Dynamics, 1(3), 410–421.

    Article  Google Scholar 

  21. Sharma, N., Tarcar, A. K., Thomas, V. A., & Anupama, K. (2012). On the use of particle swarm optimization for adaptive resource allocation in orthogonal frequency division multiple access systems with proportional rate constraints. Information Sciences, 182(1), 115–124.

    Article  MathSciNet  Google Scholar 

  22. Singh, S., & Andrews, J. (2014). Joint resource partitioning and offloading in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 13(2), 888–901. doi:10.1109/TWC.2013.120713.130548.

    Article  Google Scholar 

  23. Singh, S., Andrews, J. G., & de Veciana, G. (2012). Interference shaping for improved quality of experience for real-time video streaming. IEEE Journal on Selected Areas in Communications, 30(7), 1259–1269.

    Article  Google Scholar 

  24. Soret, B., Pedersen, K. I., Jorgensen, N. T. K., & Lopez, V. (2015). Interference coordination for dense wireless networks. IEEE Communications Magazine, 53(1), 102–109. doi:10.1109/MCOM.2015.7010522.

    Article  Google Scholar 

  25. Strinati, E., De Domenico, A., Duda, A. (2011). Ghost femtocells: A novel radio resource management scheme for ofdma based networks. In IEEE Conference on Wireless Communications and Networking (WCNC) (pp. 108–113). doi:10.1109/WCNC.2011.5779115.

  26. Tamura, H., Yahiro, Y., Fukuda, Y., Kawahara, K., Oie, Y. (2007). Performance analysis of energy saving scheme with extra active period for lan switches. In IEEE Conference on Global Telecommunications, GLOBECOM ’07 (pp. 198–203). doi:10.1109/GLOCOM.2007.45.

  27. Thakolsri, S., Kellerer, W., Steinbach, E. (2011). Qoe-based cross-layer optimization of wireless video with unperceivable temporal video quality fluctuation. In 2011 IEEE International Conference on Communications (ICC) (pp. 1–6). doi:10.1109/icc.2011.5963296.

  28. Xu, J., Zhang, J., & Andrews, J. (2011). On the accuracy of the wyner model in cellular networks. IEEE Transactions on Wireless Communications, 10(9), 3098–3109. doi:10.1109/TWC.2011.062911.100481.

    Article  Google Scholar 

  29. Yang, M., Groves, T., Zheng, N., & Cosman, P. (2014). Iterative pricing-based rate allocation for video streams with fluctuating bandwidth availability. IEEE Transactions on Multimedia, 16(7), 1849–1862. doi:10.1109/TMM.2014.2343943.

    Article  Google Scholar 

  30. Yeh, S. P., Talwar, S., Himayat, N., Johnsson, K. (2010). Power control based interference mitigation in multi-tier networks. In IEEE GLOBECOM Workshops (GC Wkshps), 2010 (pp. 701–705). doi:10.1109/GLOCOMW.2010.5700413.

  31. Zhao, Y., & Haggman, S. G. (2001). Intercarrier interference self-cancellation scheme for ofdm mobile communication systems. IEEE Transactions on Communications, 49(7), 1185–1191. doi:10.1109/26.935159.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lu, Z., Wen, X. et al. QoE-Energy Aware Opportunistic Interference Scaling in Dense Heterogeneous Networks. Wireless Pers Commun 92, 1801–1827 (2017). https://doi.org/10.1007/s11277-016-3635-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3635-8

Keywords

Navigation