Skip to main content
Log in

2-D Digital Predistortion Using Vector Quantization Method for Dual-Band Transmitters

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes a two-dimensional (2-D) digital predistortion (DPD) technique using vector quantization piecewise (VQP) method to compensate for nonlinearities of power amplifiers (PAs) in concurrent dual-band wireless transmitters. 2-D DPD architecture is used to extract the predistortion coefficients and linearize the PA in each band separately, which results in lower sampling rates of digital-to-analog and analog-to-digital converters compared to traditional 1-D method. Vector quantization method is introduced to divide the 2-D signal space into several regions in terms of signal amplitude probability distribution and subtle 2-D memory polynomial (MP) models are assigned to the regions, thus the proposed technique can linearize the PA in the whole signal amplitude range successfully due to the fact that PA nonlinearities are usually dependent on amplitude modulation characteristics strongly. The performance of dual-band wideband code division multiple access (WCDMA) signals which are 100 MHz apart is investigated. The simulation results show that when the region number is 16, 2-D VQP DPD implement can improve the PA’s adjacent channel power ratio (ACPR) by about 13dBc, and it is 8 dB better than the 2-D PDD method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, B., Kim, I., & Moon, J. (2010). Advanced Doherty architecture. IEEE Microwave Magazine, 11(5), 72–86.

    Article  Google Scholar 

  2. Jia, S., Chen, W., & Schreurs, D. (2015). A novel doherty transmitter based on antenna active load modulation. IEEE Microwave and Wireless Components Letters, 25(4), 271–273.

    Article  Google Scholar 

  3. Wang, F., Yang, A. H., Kimball, D. F., Larson, L. E., & Asbeck, P. M. (2005). Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1244–1255.

    Article  Google Scholar 

  4. Park, S., Woo, J. L., Kim, U., & Kwon, Y. (2015). Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking. IEEE Transactions on Microwave Theory and Techniques, 63(4), 1174–1185.

    Article  Google Scholar 

  5. Ding, L., Zhou, G. T., & Morgan, D. R. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.

    Article  Google Scholar 

  6. Guan, L., & Zhu, A. (2014). Green communications: Digital predistortion for wideband RF power amplifiers. IEEE Microwave Magazine, 15(4), 84–99.

    Article  MathSciNet  Google Scholar 

  7. Swaminathan, J. N., & Kumar, P. (2015). Design of efficient adaptive predistorter for nonlinear high power amplifier. Wireless Personal Communications, 82(2), 1085–1093.

    Article  Google Scholar 

  8. Roblin, P., Myoung, S. K., Chaillot, D., Kim, Y. G., Fathimulla, A., Strahler, J., et al. (2008). Frequency-selective predistortion linearization of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 56(1), 65–76.

    Article  Google Scholar 

  9. Bassam, S. A., Helaoui, M., & Ghannouchi, F. M. (2011). 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 59(10), 2547–2554.

    Article  Google Scholar 

  10. Ding, L., Yang, Z., & Gandhi, H. (2012). Concurrent dual-band digital pre-distortion. In IEEE MTT-S International Microwave Symposium Digest (pp. 1–3).

  11. Liu, Y. J., Chen, W. H., Zhou, J., Zhou, B. H., & Ghannouchi, F. M. (2013). Digital predistortion for concurrent dual-band transmitters using 2-D modified memory polynomials. IEEE Transactions on Microwave Theory and Techniques, 61(1), 281–290.

    Article  Google Scholar 

  12. Fehri, B., & Boumaiza, S. (2004). Baseband equivalent Volterra series for digital predistortion of dual-band power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 62(3), 700–714.

    Article  Google Scholar 

  13. Younes, M., & Ghannouchi, F. M. (2015). Behavioral modeling of concurrent dual-band transmitters based on radially-pruned Volterra model. IEEE Communications Letters, 19(5), 751–754.

    Article  Google Scholar 

  14. Moon, J., Saad, P., Son, J., Fager, C., & Kim, B. (2012). 2-D enhanced hammerstein behavior model for concurrent dual-band power amplifiers. In 42nd European Microwave Conference (pp. 1249–1252).

  15. Quindroit, C., Naraharisetti, N., Roblin, P., Gheitanchi, S., Mauer, V., & Fitton, M. (2013). 2D forward twin nonlinear two-box model for concurrent dual-band digital predistortion. In IEEE Topical Conference on Power Amplifier Wireless and Radio Applications (pp. 25–27).

  16. Zhu, A., Draxler, P. J., Hsia, C., Brazil, T. J., Kimball, D. F., & Asbeck, P. M. (2008). Digital predistortion for envelope-tracking power amplifiers using decomposed piecewise volterra series. IEEE Transactions on Microwave Theory and Techniques, 56(10), 2237–2247.

    Article  Google Scholar 

  17. Naraharisetti, N., Roblin, P., Quindroit, C., & Gheitanchi, S. (2015). Efficient least-squares 2-D-cubic spline for concurrent dual-band systems. IEEE Transactions on Microwave Theory and Techniques, 63(7), 2199–2210.

    Article  Google Scholar 

  18. Afsardoost, S., Eriksson, T., & Fager, C. (2012). Digital predistortion using a vector-switched model. IEEE Transactions on Microwave Theory and Techniques, 60(4), 1164–1174.

    Article  Google Scholar 

  19. Gersho, A., & Gray, R. M. (2005). Vector quantization and signal compression. Berlin: Springer.

    MATH  Google Scholar 

  20. Morgan, D., Ma, Z., Kim, J., Zierdt, M., & Pastalan, J. (2006). A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Transactions on Signal Processing, 54(10), 3852–3860.

    Article  Google Scholar 

  21. Linde, Y., Buzo, A., & Gray, R. (1980). An algorithm for vector quantizer design. IEEE Transactions on Communications, 28(1), 84–85.

    Article  Google Scholar 

  22. Draxler, P., Yan, J., Kimball, D., & Asbeck, P. (2012). Digital predistortion for envelope tracking power amplifiers. In Proceedinds on 13th Wireless Wireless and Microwave Technology Conference (pp. 1–7).

Download references

Acknowledgments

This work was partly supported by the Natural Science Foundation of China under Grant No. 61401380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, M., Wu, X., Guan, E. et al. 2-D Digital Predistortion Using Vector Quantization Method for Dual-Band Transmitters. Wireless Pers Commun 94, 643–657 (2017). https://doi.org/10.1007/s11277-016-3641-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3641-x

Keywords

Navigation