Skip to main content
Log in

Performance Improvement of Digital Image Transmission over Mobile WiMAX Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper studies the performance of image transmission over WiMAX networks under different fading channels. The objective is determining the optimum technique in every transmission stage that can be used for obtaining the optimum performance of the image transmission process. The results are evaluated in terms of Bit Error Rate, and Peak Signal to Noise Ratio for various values of Signal to Noise Ratio. The first stage is the image segmentation, where the transmitted image is segmented into packets; the tested packet lengths are 1, 2, 4, 8, 16 Kbits. The second stage is the encoding, where the Convolutional Code, Low Density Parity Check, and Turbo codes with different code rates are tested. The third stage is the interleaving, where the block, chaotic interleaver algorithms are tested. The fourth stage is modulation; where Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying and Quadrature Amplitude Modulation with different lengths are tested. The results show that, the performance of image transmission over the mobile WiMAX can be improved by applying the optimum technique in each transmission stage. Increasing the packet length, using the Turbo code with 1/2 code rate, chaotic interleaver and BPSK modulation achieves the optimum performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. WiMAX Forum Network Working Group. (2008, January). WiMAX forum network architecture stage 2: Architecture tenets, reference model and reference points—Release 1, version 1.2. In WiMAX Forum.

  2. Agarwal, A., Behera, C., & Agarwal, K. (2013). Effect of guard time on BER performance of OFDM based WIMAX (IEEE 802.16d) system. International Journal of Electronics and Communication Engineering, 6, 41–55.

    Google Scholar 

  3. Rekha, S. M., & Manoj, P. B. (2013). Comparing the BER performance of WiMAX system by using different concatenated channel coding techniques under AWGN, Rayleigh and Rician fading channels. International Journal of Engineering and Advanced Technology, 2(6), 8–14.

    Google Scholar 

  4. Kunst, R., Both, C. B., Granville, L. Z., & Rochol, J. (2011). On the impact of hybrid errors on mobile WiMAX networks. Computer Networks, 55, 3659–3671.

    Article  Google Scholar 

  5. Naqvi, A. N., Abbas, A. M., & Chouhan, T. A. (2012). Performance evaluation of fixed and mobile WiMAX networks for UDP traffic. International Journal of Advanced Research in Computer and Communication Engineering, 1(8), 563–569.

    Google Scholar 

  6. Belghith, A., & Nuaymi, L. (2008). Design and implementation of a QoS-included WiMAX module for NS-2 simulator. In Proceedings of the 1st international conference on Simulation tools and techniques for communications, networks and systems. Brussels, Belgium.

  7. Borin, J. F., & da Fonseca, N. L. S. (2008). Simulator for WiMAX networks. Simulation Modelling Practice and Theory, 16, 817–833.

    Article  Google Scholar 

  8. Khan, M. N., & Ghauri, S. (2008). The WiMAX 802.16e physical layer model. In IET International Conference on (pp. 117-120).

  9. Kaur, S., & Singh, K. (2014). Performance evaluation of bit error rate in WiMAX using different modulation techniques. International Journal for Technological Research in Engineering, 1(10), 1135–1138.

    Google Scholar 

  10. Ali, N. A., Dhrona, P., & Hassanein, H. (2009). A performance study of uplink scheduling algorithms in point-to-multipoint WiMAX networks. Computer Communications, 32, 511–521.

    Article  Google Scholar 

  11. Mirahmadi, M., Al-Dweik, A., & Shami, A. (2013). BER reduction of OFDM based broadband communication systems over multipath channels with impulsive noise. IEEE Transactions on Communications, 61(11), 4602–4615.

    Article  Google Scholar 

  12. Shanthi, T. (2014). Implementation of Multimode interleaver address generator for wireless application. International Journal of Engineering Sciences and Research Technology, 3(4), 7045–7050.

    Google Scholar 

  13. Islam, A., & Islam, A. Z. M. T. (2012). Performance of WIMAX physical layer with variations in channel coding and digital modulation under realistic channel conditions. International Journal of Information Sciences and Techniques, 2(4), 39–47.

    Article  Google Scholar 

  14. Sharona, O., Lironb, A., & Alpertc, Y. (2014). Efficient coupled PHY and MAC use of physical bursts by ARQ-enabled connections in WiMAX/IEEE 802.16e networks. Physical Communication, 10, 72–105.

    Article  Google Scholar 

  15. Nandhini, A., & Poornima, D. (2014). Devi, “Error reduction in WiMAX deinterleaver address generator by using majority logic circuit”. International Journal of Innovative Research in Computer and Communication, Engineering, 2, 3905–3909.

    Google Scholar 

  16. Lawala, I. A., Saidb, A. M., Muazuc, A. A., & Shah, P. A. (2014). Performance comparison of centralized and distributed network models to support QoS in fixed WiMAX. Procedia Social and Behavioral Sciences, 129, 441–452.

    Article  Google Scholar 

  17. Karim, N. S., & Ahmed, M. (2008, May). Performance study on optimal boundary per WiMAX cell. In International Conference on Computer and Communication Engineering (pp. 849–853).

  18. Chan, F., & Haccoun, D. (1997). Adaptive Viterbi decoding of convolutional codes over memoryless channels. IEEE Transactions on Communications, 45(11), 1389–1400.

    Article  Google Scholar 

  19. Benvenuto, N., Bettella, L., & Marchesani, R. (1998). Performance of the Viterbi algorithm for interleaved convolutional codes. IEEE transactions on vehicular technology, 47(3), 919–923.

    Article  Google Scholar 

  20. Gallager, R. (1962). Low-density parity-check codes. IRE Transactions on information theory, 8(1), 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  21. Lakra, M., Dahiya, R., & Kikan, S. (2013). Performance analysis of low density parity-check codes (LDPC) In WiMAX OFDM system. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(7), 2869–2874.

    Google Scholar 

  22. Shin, K. W., & Kim, H. J. (2012). A multi-mode LDPC decoder for IEEE 802.16e mobile WiMAX. Journal of Semiconductor Technology and Science, 12(1), 25–34.

    MathSciNet  Google Scholar 

  23. Berrou, C., & Glavieux, A. (1996). Near optimum error correcting coding and decoding: turbo-codes. IEEE Transaction on Communications, 44(10), 1261–1271.

    Article  Google Scholar 

  24. Kene, J. D., & Kulat, K. D. (2012). Soft output decoding algorithm for turbo codes implementation in mobile WiMAX environment. Procedia Technology, 6, 666–673.

    Article  Google Scholar 

  25. Shi, Y., Zhang, X. M., Ni, Z. C., & Ansari, N. (2004). Interleaving for combating bursts of errors. IEEE Circuits and Systems Magazine, 4, 29–42.

    Article  Google Scholar 

  26. Nguyen, V. D., & Kuchenbecker, H. (2001). Block interleaving for soft decision Viterbi decoding in OFDM systems. IEEE Vehicular Technology Confrence, 1, 470–474.

    Google Scholar 

  27. Hassan, E. S., Zhu, X., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., & Abd El-Samie, F. E. (2012). A chaotic interleaving scheme for the continuous phase modulation based single-carrier frequency-domain equalization system. Wireless Personal Communications, 62(1), 183–199.

    Article  MATH  Google Scholar 

  28. El-Bakary, E. M., Hassan, E. S., Zahran, O., El-Dolil, S. A., & Abd El-Samie, F. E. (2013). Efficient image transmission with multi-carrier CDMA. Wireless Personal Communications, 69(2), 979–994.

    Article  Google Scholar 

  29. Vinoth, P., & Jayakumar, P. (2013). A survey on modulation schemes used for link adaptation in WiMAX networks. International Journal of Computer Applications, 73(4), 18–23.

    Article  Google Scholar 

  30. Soliman, N. F., Elbendary, M. A. M., Abd El-samie, F. E., Shaalan, A. A., El-Rabaie, S., Ahmad, S., et al. (2014). Chaotic interleaver for robust progressive image transmission of LDPC coded OFDM over frequency selective fading channels. Journal of Wireless Personal Communications,. doi:10.1007/s11277-014-1977-7.

    Google Scholar 

  31. Abouelfadl, A. A., El-Bendary, M. A. M., & Shawki, F. (2014). Enhancing transmission over wireless image sensor networks based on ZigBee network. Life Science Journal, 11(8), 342–354.

    Google Scholar 

  32. El-Bendary M. A. M.,, Kasban, H., & El-Tokhy, M. A. R. (2014). Interleaved reed-solomon codes with code rate switching over wireless communications channels. In: International Journal of Information Technology and Computer Science (IJITCS) (http://www.ijitcs.com) on, 16(1).

  33. Nassar, S. S., Ayad, N. M., Kelash, H. M., El-sayed, H. S., El-Bendary, M. A. M., Abd El-Samie, F. E., et al. (2016). Content verification of encrypted images transmitted over wireless AWGN channels. Wireless Personal Communications,. doi:10.1007/s11277-015-3142-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kasban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasban, H., El-Bendary, M.A.M.M.K. Performance Improvement of Digital Image Transmission over Mobile WiMAX Networks. Wireless Pers Commun 94, 1087–1103 (2017). https://doi.org/10.1007/s11277-016-3671-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3671-4

Keywords

Navigation