Skip to main content
Log in

Performance Analysis and Power Allocation for Underlay Cognitive MIMO Relaying Networks with Transmit Antenna Selection Under Antenna Correlation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we examine transmit antenna selection with receiver maximal ratio combining (TAS/MRC), and selection combining (TAS/SC) in underlay multiple-input multiple-output cognitive relay networks with decode-and-forward relaying protocol, considering optimal and suboptimal cases. The considered secondary user (SU) network consists of a source, a relay and a destination each equipped with multiple correlated antennas. On the other hand, the primary network is composed of L primary users (PU) destinations, each of which is equipped with multiple correlated antennas. The SU transmission power is limited to the minimum between the maximum allowable power for transmission and the maximum interference power allowed by the PU network. In the analysis, all the channel coefficients between the PU and SU networks and between the SU nodes are assumed to follow independent and identically distributed (i.i.d.) Rayleigh fading distribution. Hence, new exact closed-form expressions are derived to study the outage performance of the considered CRN system. Moreover, for the high SNR values, simple asymptotic expressions for the outage probability are obtained to get more insights on the characterization of the achievable diversity orders and coding gains. The impact of antenna correlation on the system outage probability is investigated for special correlation cases. To enhance SU network performance, a power allocation optimization problem is formulated to minimize the SU asymptotic outage probability by optimally distributing the SU power budget between the SU source and SU relay under the constraints of total allowable SU transmission power and maximum allowable PU interference limit. The derived analytical formulas herein are supported by numerical and simulation results to clarify the main contributions. The results show that although the antenna correlation harms the system coding gain, the considered system can still achieve a full diversity order. Also, The results show that although the outage performance of optimal case outperforms the suboptimal case, the optimal case is more complicated compared to the suboptimal one. Moreover, the optimal power allocation solutions enhance the system outage performance compared to equal distribution model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Elsevier Journal of Computer Networks, 50, 2127–2159.

    Article  MATH  Google Scholar 

  2. Ghasemi, A., & Sousa, E. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  3. Zhao, Q., & Sadler, B. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.

    Article  Google Scholar 

  4. Lee, J., Wang, H., Andrews, J., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  5. Zhong, C., Ratnarajah, T., & Wong, K.-K. (2011). Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in nakagami- m fading channels. IEEE Transactions on Vehicular Technology, 60(6), 2875–2879.

    Article  Google Scholar 

  6. Xu, W., Zhang, J., Zhang, P., & Tellambura, C. (2012). Outage probability of decode-and-forward cognitive relay in presence of primary user’s interference. IEEE Communications Letters, 16(8), 1252–1255.

    Article  Google Scholar 

  7. Duong, T., Benevides da Costa, D., Tsiftsis, T., Zhong, C., & Nallanathan, A. (2012). Outage and diversity of cognitive relaying systems under spectrum sharing environments in nakagami-m fading. IEEE Communications Letters, 16(12), 2075–2078.

    Article  Google Scholar 

  8. Hu, S., Yao, Y. -D., & Yang, Z. (2012). Mac protocol identification approach for implement smart cognitive radio. In Proceedings of the IEEE International Conference on Communications (pp. 5608–5612).

  9. Lee, K., Chae, C.-B., Heath, R., & Kang, J. (2011). Mimo transceiver designs for spatial sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(11), 3570–3576.

    Article  Google Scholar 

  10. Han, Y., Pandharipande, A., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.

    Article  Google Scholar 

  11. Mohammadi, A., & Ghannouchi, F. (2011). Single RF front-end MIMO transceivers. IEEE Communications Magazine, 49(12), 104–109.

    Article  Google Scholar 

  12. Sanayei, S., & Nosratinia, A. (2004). Antenna selection in mimo systems. IEEE Communications Magazine, 42(10).

  13. Prakash, S., & McLoughlin, I. (2011). Effects of channel prediction for transmit antenna selection with maximal-ratio combining in rayleigh fading. IEEE Transactions on Vehicular Technology, 60(6), 2555–2568.

    Article  Google Scholar 

  14. Radaydeh, R. (2008). Performance analysis of rectangular quadrature amplitude modulation with combined arbitrary transmit antenna selection and receive maximal ratio combining in nakagami-m fading. IET Communications, 2(8), 1077–1088.

    Article  Google Scholar 

  15. Radaydeh, R. (2009). Impact of delayed arbitrary transmit antenna selection on the performance of rectangular qam with receive mrc in fading channels. IEEE Communications Letters, 13(6), 390–392.

    Article  Google Scholar 

  16. Yeoh, P., Elkashlan, M., Yang, N., da Costa, D., & Duong, T. (2013). Unified analysis of transmit antenna selection in MIMO multirelay networks. IEEE Transactions on Vehicular Technology, 62(2), 933–939.

    Article  Google Scholar 

  17. Duong, T. Q., Yang, N., Yeoh, P. L., Elkashlan, M., & da Costa, D. B. (2013). “Transmit antenna selection in cognitive relay networks with nakagamim fading,” In Proc. IEEE Int. Conf. on Commun.

  18. Yeoh, P. L., Elkashlan, M., Duong, T. Q., Yang, N., & Leung, C. (2013) Cognitive MIMO relaying in nakagami-m fading. In Proceedings of the IEEE Vehicular Technology Conference.

  19. Louie, R. H. Y., Li, Y., Suraweera, H., & Vucetic, B. (2009). Performance analysis of beamforming in two hop amplify and forward relay networks with antenna correlation. IEEE Transactions on Wireless Communications, 8, 3132–3141.

    Article  Google Scholar 

  20. Ferdinand, N., & Rajatheva, N. (2011). Unified performance analysis of two-hop amplify-and-forward relay systems with antenna correlation. IEEE Transactions on Wireless Communications, 10, 3002–3011.

    Article  Google Scholar 

  21. Yeoh, P., Elkashlan, M., Duong, T., Yang, N., & da Costa, D. (2014). Transmit antenna selection for interference management in cognitive relay networks. IEEE Transactions on Vehicular Technology, 63(7), 3250–3262.

    Article  Google Scholar 

  22. Liu, Z., Xu, Y., Zhang, D., & Guan S. (2010). An efficient power allocation algorithm for relay assisted cognitive radio network. In Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP) (pp. 1–5).

  23. Zarifi, K., Affes, S., & Ghrayeb, A. (2011). Joint source power control and relay beamforming in amplify-and-forward cognitive networks with multiple source-destination pairs. In Proceedings of the IEEE International Conference on Communications (ICC) (pp. 1–6).

  24. Pareek, U., & Lee, D. (2011). Resource allocation in bidirectional cooperative cognitive radio networks using swarm intelligence. In Proc. IEEE Symp. on Swarm Intellig. (SIS) (pp. 1–7).

  25. Zafar, A., Chen, Y., Alouini, M.-S., & Radaydeh, R. (2012). Resource allocation for relay assisted cognitive radio networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) (pp. 658–662). IEEE.

  26. Jayasinghe, L., & Rajatheva, N. (2010). Optimal power allocation for relay assisted cognitive radio networks. In Proceedings of the IEEE Vehicular Technology Conference (pp. 1–5). Fall.

  27. Li, L., Zhou, X., Xu, H., Li, G., Wang, D., & Soong, A. (2011). Simplified relay selection and power allocation in cooperative cognitive radio systems. IEEE Transactions on Wireless Communications, 10(1), 33–36.

    Article  Google Scholar 

  28. Ferdinand, N. S., Rajatheva, N., & Latva-aho, M. (2013). Exact ergodic capacity of mimo ostbc amplify-and-forward relay network with antenna correlation. In Proceedings of the IEEE International Conference on Communications (pp. 5301–5305).

  29. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  30. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products. San Diego: Academic Press.

    MATH  Google Scholar 

Download references

Acknowledgments

This paper was made possible by King Fahd University of Petroleum & Minerals (KFUPM) grant no. FT141007 and the NPRP grant No. 8-1545-2-657 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salam A. Zummo.

Appendices

Appendix A

1.1 Proof of (23) and (24)

Based on (22), TAS/MRC outage probability is derived according to

$$\begin{aligned} P_{{\mathsf{out}}}=1-\left( 1-F_\mathsf{\gamma _1}(\gamma _{{\mathsf{th}}})\right) \left( 1-F_\mathsf{\gamma _2}(\gamma _{{\mathsf{th}}})\right) , \end{aligned}$$
(69)

where \(F_\mathsf{\gamma _1}(\gamma _{{\mathsf{th}}})\) and \(F_\mathsf{\gamma _2}(\gamma _{{\mathsf{th}}})\) are the CDFs of \(\gamma _1\) and \(\gamma _2\), respectively in (4) and (5) for optimal TAS/MRC scheme and in (6) and (7) for suboptimal case. The CDF of \(\gamma _1\) is derived as

$$\begin{aligned} F_{\gamma _1}(\gamma _{{\mathsf{th}}})=&\left[ Pr\left( {\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2} \le \frac{\gamma _{{\mathsf{I}}}}{\gamma _{{\mathsf{P}}}},\Vert {{\mathbf {h}}}_{{{\mathsf{1}}}i} \Vert ^2 \le \frac{\gamma _{{\mathsf{th}}}}{\gamma _{{\mathsf{P}}}} \right) + Pr\left( {\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2}\ge \frac{\gamma _{{\mathsf{I}}}}{\gamma _{{\mathsf{P}}}},\frac{\Vert {{\mathbf {h}}}_{{{\mathsf{1}}}i} \Vert ^2}{{\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2}} \le \frac{\gamma _{{\mathsf{th}}}}{\gamma _{{\mathsf{I}}}} \right) \right] ^{M}, \end{aligned}$$
(70)

where M equals \(N_\mathsf{s}\) for optimal cognitive TAS/MRC scheme and equals 1 for suboptimal cognitive TAS/MRC scheme. By equating \(F_{\gamma _1}(\gamma _{{\mathsf{th}}})=\left[ {{\mathcal {I}}}_1+{{\mathcal {I}}}_2\right] ^{M}\), the first term \({{\mathcal {I}}}_1\) is

$$\begin{aligned} {{\mathcal {I}}}_1=F_{{\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2}}\left( \frac{\gamma _{{\mathsf{I}}}}{\gamma _{{\mathsf{P}}}}\right) F_{\Vert {{\mathbf {h}}}_{{{\mathsf{1}}}i} \Vert ^2}\left( \frac{\gamma _{{\mathsf{th}}}}{\gamma _{{\mathsf{P}}}}\right) , \end{aligned}$$
(71)

where \(F_{\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2}(.)\) is the CDF of \(\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2\) which is given by (14), and the CDF of \(\Vert {{\mathbf {h}}}_{{{\mathsf{1}}}i} \Vert ^2\) is given by (21). The second term \({{\mathcal {I}}}_2\) can be evaluated as

$$\begin{aligned} {{\mathcal {I}}}_2=\int _{\frac{\gamma _{{\mathsf{I}}}}{\gamma _{{\mathsf{P}}}}}^{\infty }F_{\Vert {{\mathbf {h}}}_{{{\mathsf{1}}}i}\Vert ^2}\left( \frac{\gamma _{{\mathsf{th}}} z}{\gamma _{{\mathsf{I}}}}\right) f_{\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2}(z)dz, \end{aligned}$$
(72)

where \(f_{\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2}(.)\) is the pdf of \(\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2\) which is given by (16) The integral is solved by applying [30, 3.351.2] \(\int _{\mu }^{\infty }x^n e^{-\alpha x}dx=\alpha ^{-(n+1)} \Gamma (n+1,\alpha \mu )\).

Similarly the CDF of \(\gamma _2\) is derived based on (70) by substituting the parameters for the source-to-relay link with their relay-to-destination counterparts. Substituting the resulting expressions for \(F_{\gamma _1}(\gamma _{{\mathsf{th}}})\) and \(F_{\gamma _2}(\gamma _{{\mathsf{th}}})\) into (69) yields the outage probability in (35).

Appendix B

1.1 Proof of (25) and (28)

The SU transmitted power is considered to be constrained by the peak interference limit at the PUs according to \(\gamma _{{\mathsf{P}}}=\mu \gamma _{{\mathsf{I}}}\), where \(\mu\) is a positive constant. Then the first order expansion of \(F_{\gamma _1}(\gamma _{{\mathsf{th}}})\) in (70) as \(\gamma _{{\mathsf{P}}}\rightarrow \infty\) can be derived as \(F^{\infty }_{\gamma _1}(\gamma _{{\mathsf{th}}})={{\mathcal {I}}}^{\infty }_1+{{\mathcal {I}}}^{\infty }_2\), where \({{\mathcal {I}}}^{\infty }_1\) is given by

$$\begin{aligned} {{\mathcal {I}}}^{\infty }_1=F_{{\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2}}\left( \frac{1}{\mu }\right) F^{\infty }_{\Vert {{\mathbf {h}}}_{{{\mathsf{1}}}i} \Vert ^2}\left( \frac{\gamma _{{\mathsf{th}}}}{\mu \gamma _{{\mathsf{I}}}}\right) , \end{aligned}$$
(73)

where \(F^{\infty }_{\Vert {{\mathbf {h}}}_{{{\mathsf{1}}}i} \Vert ^2}(y)\) is given by (61). Then, \({{\mathcal {I}}}^{\infty }_2\) can also be evaluated from (72) such as

$$\begin{aligned} {{\mathcal {I}}}^{\infty }_2=\int _{\frac{1}{\mu }}^{\infty }F^{\infty }_{\Vert {{\mathbf {h}}}_{{{\mathsf{1}}}i}\Vert ^2}\left( \frac{\gamma _{{\mathsf{th}}} z}{\gamma _{{\mathsf{I}}}}\right) f_{\Vert \widetilde{{{\mathbf {g}}}}_{{{\mathsf{1}}}i^*}\Vert ^2}(z)dz. \end{aligned}$$
(74)

Similarly the first order expansion of \(F_{\gamma _2}(\gamma _{{\mathsf{th}}})\) as \(\gamma _{{\mathsf{P}}} \rightarrow \infty\) is derived by following the same steps to obtain the asymptotic expressions for the outage probability in (25) and (28).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Malek, A.H.A., Al-Qahtani, F.S., Radaydeh, R.M. et al. Performance Analysis and Power Allocation for Underlay Cognitive MIMO Relaying Networks with Transmit Antenna Selection Under Antenna Correlation. Wireless Pers Commun 94, 3057–3089 (2017). https://doi.org/10.1007/s11277-016-3765-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3765-z

Keywords

Navigation