Skip to main content
Log in

Precoding Design with Joint Dynamic Channel Assignment and Band Selection Techniques for Downlink CoMP OFDMA Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multi cell transmission can prevent the multi-cell interference by localizing the signals at different sub-band for the downlink (DL) localized orthogonal frequency division multiple access (OFDMA) systems. However, the synchronized errors, such as carrier frequency offset (CFO), will induce the challenging problems of interference due to the non-orthogonality between the subcarriers and cells. In this paper, we propose the novel precoding design with joint dynamic channel assignment and band selection techniques for DL coordinated multipoint (CoMP) OFDMA systems with CFO effect. Further, a two-stage pre-processing technique is proposed to eliminate the above interference problems and reduce the computational complexity of the cell-edge users for DL CoMP OFDMA systems. Moreover, the central unit can assign the resource dynamically to enhance the link quality. Therefore, the dynamic channel on/off assignment techniques and the dynamic band selection techniques are proposed to enhance the bit error rate (BER) performance. Simulation results confirm that the proposed precoding transceiver provides excellent BER and lower computational complexity of the cell-edge communication than the conventional block diagonalization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Song, S. H., Chen, G. L., & Letaief, K. B. (2011). Localized or interleaved? A tradeoff between diversity and CFO interference in multipath channels. IEEE Transactions on Wireless Communications, 10(9), 2829–2834.

    Article  Google Scholar 

  2. GPP. (2011). Coordinated multi-point operation for LTE physical layer aspects. TR 36.819.

  3. R2-093728. Impact of DL CoMP on user plane. CATT. http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_66bis/docs/R2-093728.zip.

  4. Shen, Z., Papasakellariou, A., Montojo, J., Gerstenberger, D., & Xu, F. (2012). Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine, 50(2), 122–130.

    Article  Google Scholar 

  5. Sun, S., Gao, Q., Peng, Y., Wang, Y., & Song, L. (2013). Interference management through CoMP in 3GPP LTE-advanced networks. IEEE Wireless Communications, 20(1), 59–66.

    Article  Google Scholar 

  6. Cui, Q., Yang, S., Xu, Y., Tao, X. F., & Liu, B. L. (2011). An effective inter-cell interference coordination scheme for downlink CoMP in LTE-A systems. In IEEE VTC fall (pp. 1–5).

  7. Gao, X., Li, A., & Kayama, H. (2009). Low-complexity downlink coordination scheme for multi-user CoMP in LTE-advanced system. In IEEE personal, indoor and mobile radio communications (pp. 355–359).

  8. Sung, H., Lee, S. R., & Lee, I. (2009). Generalized channel inversion methods for multiuser MIMO systems. IEEE Transactions on Communications, 57(11), 3489–3499.

    Article  Google Scholar 

  9. Tan, Z., Zhou, W., Chen, W., Chen, S., & Xu, Y. (2011). A dynamic cell selection scheme based on multi-object for CoMP DL in LTE-A. In IET international conference on communication technology and application (pp. 248–252).

  10. Haskou, A., Jaffal, Y., Challita, U., & Nasser, Y. (2014). On the coherent precoding performance for downlink CoMP-MIMO networks. In IEEE Mediterranean electrotechnical conference (pp. 344–349).

  11. Lakshmana, T. R., Tölli, A., Devassy, R., & Svensson, T. (2016). Precoder design with incomplete feedback for joint transmission. IEEE Transactions on Wireless Communications, 15(3), 1923–1936.

    Article  Google Scholar 

  12. Herath, S. P., Nguyen, D. H. N., & Le-Ngoc, T. (2015). Vector perturbation precoding for multi-user CoMP downlink transmission. IEEE Access, 3, 1491–1502.

    Article  Google Scholar 

  13. Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB, Chapter 12 and Chapter 13. Wiley.

  14. Shim, S., Jin, S. K., Heath, R. W., & Andrews, J. G. (2008). Block diagonalization for multi-user MIMO with other-cell interference. IEEE Transactions on Wireless Communications, 7(7), 2671–2681.

    Article  Google Scholar 

  15. Costa, M. (1983). Writing on dirty paper. IEEE Transactions on Information Theory, 29(3), 439–441.

    Article  MathSciNet  MATH  Google Scholar 

  16. Khina, A., & Erez, U. (2010). On the robustness of dirty paper coding. IEEE Transactions on Communications, 58(5), 1437–1446.

    Article  Google Scholar 

  17. Krongold, B. S., Ramchandran, K., & Jones, D. L. (1998). Computationally efficient optimal power allocation algorithm for multicarrier communication systems. In IEEE ICC (Vol. 2, pp. 1018–1022).

  18. Pitakdumrongkija, B., Fukawa, K., Suzuki, H., & Hagiwara, T. (2007). Linear precoding with minimum BER criterion for MIMO-OFDM systems employing ML detection. In IEEE ICC (pp. 2522–2527).

  19. Cheng, J., Yao, Y., & Zhou, S. (2006). Multi-mode precoding for correlated MIMO channels with minimum BER selection criterion. In IEEE VTC spring (pp. 1392–1395).

  20. Airy, M., Bhadra, S., Heath Jr., R. W., & Shakkottai, S. (2006). Transmit precoding for the multiple antenna broadcast channel. In IEEE VTC spring (Vol. 3, pp. 1396–1400).

  21. Fung, C. H., Wei, Y., & Teng, J. L. (2007). Precoding for the multiantenna downlink: Multiuser SNR gap and optimal user ordering. IEEE Transactions on Communications, 55(1), 188–197.

    Article  Google Scholar 

  22. Deng, J. H., Jhan, S. C., & Huang, S. Y. (2013). A low complexity precoding transceiver design for double STBC system. IEICE Transactions on Communications, E96-B(4), 1075–1080.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Ministry of Science and Technology, R.O.C., under Contract MOST 105-2221-E-155-007 and MOST 104-2218-E-155-002. The authors would also like to thank the Editor and anonymous reviewers for their helpful comments and suggestions in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Yang Huang.

Appendix: Derivation of New LQ Decomposition in (8)

Appendix: Derivation of New LQ Decomposition in (8)

In (8), the new rearranged channel matrix is \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} }}_{k}\). The new \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} }}_{k}\) is used to derive the new LQ decomposition as follows.

For example, in a 2 × n channel matrix \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} }}_{k}\), \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} }}_{k}\) can be described by

$${\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} }}_{k} = \left[ {\begin{array}{*{20}c} {{\bar{\mathbf{h}}}_{1} } \\ {{\bar{\mathbf{h}}}_{2} } \\ \end{array} } \right]$$
(19)

where \({\bar{\mathbf{h}}}_{1}\) and \({\bar{\mathbf{h}}}_{2}\) are 1 × n matrices. The LQ decomposition of \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} }}_{k}\) can be written as

$$\left[ {\begin{array}{*{20}c} {{\bar{\mathbf{h}}}_{1} } \\ {{\bar{\mathbf{h}}}_{2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {l_{11} } & 0 \\ {l_{21} } & {l_{22} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\bar{\mathbf{q}}}_{1} } \\ {{\bar{\mathbf{q}}}_{2} } \\ \end{array} } \right]$$
(20)

where l 11, l 21, and l 22 are scalars. The \({\bar{\mathbf{q}}}_{1}\) and \({\bar{\mathbf{q}}}_{2}\) are the orthonormal vectors, i.e., \({\bar{\mathbf{q}}}_{x}^{\text{H}} {\bar{\mathbf{q}}}_{y} = 1\) and \({\bar{\mathbf{q}}}_{x}^{\text{H}} {\bar{\mathbf{q}}}_{y} = 0\) \({\mathbf{(}}x \ne y{\mathbf{)}}\),respectively. Based on the first row in (20), and, since \({\bar{\mathbf{q}}}_{1}\) is an orthonormal property, we can derive the l 11 and \({\bar{\mathbf{q}}}_{1}\), i.e.,

$${\bar{\mathbf{h}}}_{1} = l_{11} {\bar{\mathbf{q}}}_{1}$$
(21)

where \({\bar{\mathbf{q}}}_{1} = {{{\bar{\mathbf{h}}}_{1} } \mathord{\left/ {\vphantom {{{\bar{\mathbf{h}}}_{1} } {\left\| {{\bar{\mathbf{h}}}_{1} } \right\|}}} \right. \kern-0pt} {\left\| {{\bar{\mathbf{h}}}_{1} } \right\|}}\) and \(l_{11} = \left\| {{\bar{\mathbf{h}}}_{1} } \right\|\). Next, by applying the known \({\bar{\mathbf{q}}}_{1}\) and \({\bar{\mathbf{q}}}_{1}^{\text{H}} {\bar{\mathbf{q}}}_{2} { = 0}\) property, the l 12 can be derived by the second row in (20):

$${\bar{\mathbf{h}}}_{2} = l_{21} {\bar{\mathbf{q}}}_{1} + l_{22} {\bar{\mathbf{q}}}_{2}$$
(22)

where \(l_{12} = {\bar{\mathbf{q}}}_{1}^{\text{H}} {\bar{\mathbf{h}}}_{2}\). Finally, substituting the known l 12 and \({\bar{\mathbf{q}}}_{1}\) into (22), gets the new \({\mathbf{\bar{\bar{h}}}}_{2}\), i.e.,

$$\begin{aligned} {\mathbf{\bar{\bar{h}}}}_{2} & = {\bar{\mathbf{h}}}_{2} - l_{12} {\bar{\mathbf{q}}}_{1} \\ & = l_{22} {\bar{\mathbf{q}}}_{2} \\ \end{aligned}$$
(23)

Next, since \({\bar{\mathbf{q}}}_{2}\) has the same orthonormal property described in (21), the l 22 and \({\bar{\mathbf{q}}}_{2}\) can be derived by (23), i.e.,

$${\bar{\mathbf{q}}}_{2} = {{{\mathbf{\bar{\bar{h}}}}_{2} } \mathord{\left/ {\vphantom {{{\mathbf{\bar{\bar{h}}}}_{2} } {\left\| {{\mathbf{\bar{\bar{h}}}}_{2} } \right\|}}} \right. \kern-0pt} {\left\| {{\mathbf{\bar{\bar{h}}}}_{2} } \right\|}}$$
(24)
$$l_{22} = \left\| {{\mathbf{\bar{\bar{h}}}}_{2} } \right\|$$
(25)

The procedures described in (19)–(25) get the new LQ decomposition of the rearranged channel matrix \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} }}_{k}\). Notably, \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} }}_{k}\) for a n × n channel matrix can be derived by referring to the procedures listed in (19)–(25).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, JH., Huang, SY. Precoding Design with Joint Dynamic Channel Assignment and Band Selection Techniques for Downlink CoMP OFDMA Systems. Wireless Pers Commun 94, 3113–3129 (2017). https://doi.org/10.1007/s11277-016-3767-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3767-x

Keywords

Navigation