Skip to main content
Log in

Modeling and Analysis of the TXOPLimit Efficiency with the Packet Fragmentation in an IEEE 802.11e-EDCA Network Under Noise-Related Losses

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Analytical modeling and performance study of the Enhanced Distributed Channel Access (EDCA) function of the IEEE 802.11e standard has been the topic of various works available in the literature. Nevertheless, the Packet Fragmentation (PF) conceived by the IEEE 802.11 work group for decreasing the effect of noise-related losses on the performances of IEEE 802.11 networks, has not at all been taken into account in the analytical models proposed for evaluating the performance of the Opportunity Transmission Limit (TXOPLimit), which is a key parameter of the EDCA function for a Differentiated Service in an IEEE 802.11e network. While, the PF can be employed with the TXOPLimit, in order to boost the efficiency of the Contention Free Burst of both Voice and Video streams under noise-related losses. In this paper, we aim at extending the Markov chain models proposed for the IEEE 802.11e-EDCA network, in order to especially model the TXOPLimit, the PF and the Packet Error Rate. Besides, we elaborate a mathematical model to compute the saturation throughput of Access Categories, Voice, Video, Best Effort and Background. The achieved numerical results indicate, for the first time that, the PF permits boosting the TXOPLimit efficiency under noise-related losses. Thus, the saturation throughputs of both Voice and Video access categories are substantially enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. IEEE 802.11 Standard Part II. (1999). Wireless LAN medium access control (MAC) and physical (PHY) specifications.

  2. Kosek-Szott, K., Natkaniec, M., & Pach, A. R. (2011). A simple but accurate throughput model for IEEE 802.11 EDCA in saturation and non-saturation conditions. Computer Networks, 55(3), 622–635.

    Article  MATH  Google Scholar 

  3. IEEE 802.11e Standard Part II. (2005). Wireless LAN medium access control (MAC) and physical (PHY) specifications. Amendement 8: Medium access control (MAC) quality of service enhancements.

  4. Lee, Y., Lee, K. S., & Jang, J. M. (2007). Saturation throughput analysis of IEEE 802.11e EDCA (pp. 1223–1232). Berlin/Heidelberg: Springer.

    Google Scholar 

  5. Al-Karaki, J. N., & Chang, J. M. (2004). Quality of service support in IEEE 802.11 wireless ad hoc networks. Ad Hoc Networks, 2(3), 265–281.

    Article  Google Scholar 

  6. Hamidian, A., & Korner, U. (2006). An enhancement to the IEEE 802.11e EDCA providing QoS guarantees. Telecommunication Systems, 31(2–3), 195–212.

    Article  Google Scholar 

  7. Fan, Z. (2007). Throughput and QoS optimization for EDCA-based IEEE 802.11 WLANs. Wireless Personal Communications, 43(4), 1279–1290.

    Article  Google Scholar 

  8. Gallardo, J., Medina, P., & Zhuang, W. (2007). QoS mechanisms for the MAC protocol of IEEE 802.11 WLANs. Wireless Networks, 13(3), 335–349.

    Article  Google Scholar 

  9. Lee, J. F., Liao, W., & Chen, M. C. (2007). A differentiated service model for enhanced distributed channel access (EDCA) of IEEE 802.11e WLANs. Mobile Networks and Applications, 12(1), 69–77.

    Article  Google Scholar 

  10. Ge, Y., Hou, J. C., & Choi, S. (2007). An analytical study of tunning systems parameters in IEEE 802.11e enhanced distributed channel access. Computer Networks, 51(8), 1955–1980.

    Article  MATH  Google Scholar 

  11. Lin, W. Y., & Wu, J. S. (2007). Modified EDCF to improve the performance of IEEE 802.11e WLAN. Computer Communications, 30(4), 841–848.

    Article  Google Scholar 

  12. Hamidian, A., & Korner, U. (2008). Extending EDCA with distributed ressource reservation for QoS guarantees. Telecommunication Systems, 39(3–4), 187–194.

    Article  Google Scholar 

  13. Yu, J., Choi, S., & Qiao, D. (2009). Analytical study of TCP performance over IEEE 802.11e WLANs. Mobile Networks and Applications, 14(4), 470–485.

    Article  Google Scholar 

  14. Varposhti, M., & Movahhedinia, N. (2009). Supporting QoS in IEEE 802.11e wireless LANs over fading channel. Computer Communications, 32(5), 985–991.

    Article  Google Scholar 

  15. Thangaraj, A., Zeng, Q. A., & Li, X. (2010). Performance analysis of the IEEE 802.11e wireless networks with TCP ACK prioritization. Telecommunication Systems, 45(4), 303–312.

    Article  Google Scholar 

  16. Cetinkaya, C. (2010). Service differentiation mechanisms for WLANs. Computer Networks, 8(1), 46–62.

    Google Scholar 

  17. Lagkas, T. D., Stratogiannis, D. G., & Chatzimisios, P. (2013). Modeling and performance analysis of an alternative to IEEE 802.11e hybrid control function. Telecommunication Systems, 52(4), 1961–1976.

    Article  Google Scholar 

  18. Korner, U., Hamidian, A., Pioro, M., & Nyberg, C. (2011). A distributed MAC scheme to achieve QoS in ad hoc networks. Annals of Telecommunications, 66(9–10), 491–500.

    Article  Google Scholar 

  19. Camps-Mur, D., Gomony, M. D., Perez-Costa, X., & Sallent-Ribes, S. (2012). Leveraging 802.11n frame aggregation to enhance QoS and power consumption in Wi-Fi networks. Computer Networks, 56(12), 2896–2911.

    Article  Google Scholar 

  20. Jeong, S., Kim, M., Ryu, J., Jo, D., & Han, K. (2004). An analytical model for throughput of IEEE 802.11e EDCA (pp. 304–312). Berlin/Heidelberg: Springer.

    Google Scholar 

  21. Kong, Z. N., Tsang, D. H. K., Bensaou, B., & Gao, D. (2004). Performance analysis of IEEE 802.11e contention-based channel access. IEEE Journal on Selected Areas in Communications, 22(10), 2095–2106.

    Article  Google Scholar 

  22. Vassis, D., & Kormentzas, G. (2005). Delay performance analysis and evaluation of IEEE 802.11e EDCA in finite load conditions. Wireless Personal Communications, 34(1–2), 29–43.

    Article  Google Scholar 

  23. Xiao, Y. (2005). Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Transactions on Wireless Communications, 4(4), 1506–1515.

    Article  Google Scholar 

  24. Banchs, A., & Vollero, L. (2006). Throughput analysis and optimal configuration of 802.11e EDCA. Computer Networks, 50(11), 1749–1768.

    Article  MATH  Google Scholar 

  25. Tao, Z., & Panwar, S. (2006). Throughput and delay analysis for the IEEE 802.11e enhanced distributed channel access. IEEE Transactions on Communications, 54(4), 596–603.

    Article  Google Scholar 

  26. Banchs, A., & Serrano, P. (2007). Revising 802.11e EDCA performance analysis. Wireless Personal Communications, 43(4), 1145–1149.

    Article  Google Scholar 

  27. Serrano, P., Banchs, A., & Azcorra, A. (2007). A throughput and delay model for IEEE 802.11e EDCA under non saturation. Wireless Personal Communications, 43(2), 467–479.

    Article  Google Scholar 

  28. Xiong, L., & Mao, G. (2007). Saturated throughput analysis of IEEE 802.11e EDCA. Computer Networks, 51(11), 3047–3068.

    Article  MATH  Google Scholar 

  29. Patras, P., Banchs, A., & Serrano, P. (2009). A control theoretic for throughput optimization in IEEE 802.11e EDCA WLANs. Mobile Networks and Applications, 14(6), 697–708.

    Article  Google Scholar 

  30. Pan, S. W., & Wu, J. S. (2009). Throughput analysis of IEEE 802.11 EDCA under heterogeneous traffic. Computer Communications, 32(5), 935–942.

    Article  Google Scholar 

  31. Hu, J., Min, G., & Woodward, M. E. (2011). Performance analysis of the TXOP burst transmission scheme in single-hop ad hoc networks with unbalanced stations. Computer Communications, 34(13), 1593–1603.

    Article  Google Scholar 

  32. Min, G., Hu, J., & Woodward, M. E. (2011). Modeling and analysis of TXOP differentiation in infrastructure-based WLANs. Computer Networks, 55(11), 2545–2557.

    Article  Google Scholar 

  33. Liu, X., & Saadawi, T. N. (2011). IEEE 802.11e (EDCA) analysis in the presence of hidden stations. Journal of Advanced Research, 2(3), 219–225.

    Article  Google Scholar 

  34. Hu, J., Min, G., Jia, W., & Woodward, M. E. (2012). Comprehensive QoS analysis of enhanced distributed channel access in wireless local area networks. Information Sciences, 214, 20–34.

    Article  Google Scholar 

  35. Yao, Y. C., Wen, J. H., & Weng, C. E. (2013). The performance evaluation of IEEE 802.11e for QoS support in wireless LANs. Wireless Personal Communications, 69(1), 413–425.

    Article  Google Scholar 

  36. Yazid, M., Bouallouche-Medjkoune, L., Aïssani, D., Amrouche, N., & Bakli, K. (2014). Analytical analysis of applying packet fragmentation mechanism on both basic and RTS/CTS access methods of the IEEE 802.11b DCF network under imperfect channel and finite load conditions. Wireless Personal Communications, 77(1), 477–506.

    Article  Google Scholar 

  37. Yazid, M., Sahki, N., Bouallouche-Medjkoune, L., & Aïssani, D. (2015). Modeling and performance study of the packet fragmentation in an IEEE 802.11e-EDCA network over fading channel. Multimedia Tools and Applications, 74(21), 9507–9527.

    Article  Google Scholar 

  38. Patel, P., & Lobiyal, D. K. (2015). A simple but effective collision and error aware adaptive back-off mechanism to improve the performance of IEEE 802.11 DCF in error-prone environment. Wireless Personal Communications, 83(2), 14771518.

    Article  Google Scholar 

  39. Puigjaner, R. (2003). Performance modelling of computer networks. In Proceedings of the 2003 IFIP/ACM Latin America conference on towards a Latin American agenda for network research (pp. 106–123).

  40. Moltchanov, D. (2010). Performance models for wireless channels. Computer Science Review, 4(3), 153–184.

    Article  MATH  Google Scholar 

  41. Casale, G., Gribaudo, M., & Serazzi, G. (2011). Tools for performance evaluation of computer systems: Historical evolution and perspectives. In Proceedings of performance evaluation of computer and communication systems (milestones and future challenges) (pp. 24–37). Springer, Berlin/Heidelberg.

  42. Narayan-Bhat, U. (2007). An introduction to queueing theory: Modeling and analysis in applications. New York: Springer.

    MATH  Google Scholar 

  43. Lefebvre, M. (2007). Applied stochastic processes. New York: Springer.

    MATH  Google Scholar 

  44. Bolch, G., Greiner, S., de-Meer, H., & Trivedi, K. S. (2006). Queueing networks and markov chains: Modeling and performance evaluation with computer science applications. Hoboken, NJ: Wiley.

    Book  MATH  Google Scholar 

  45. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 districuted coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  MathSciNet  Google Scholar 

  46. Giustiniano, D., Malone, D., Leith, D. J., & Papagiannaki, K. (2010). Measuring transmission opportunities in 802.11 links. IEEE/ACM Transactions on Networking, 18(5), 1516–1529.

    Article  Google Scholar 

  47. Lyakhov, A., & Vishnevsky, V. M. (2004). Packet fragmentation in Wi-Fi ad hoc networks with correlated channel failures. In Proceedings of IEEE international conference on mobile ad hoc and sensor systems (pp. 204–213).

  48. Sweedy, A. M., Semeia, A. I., Sayed, S. Y., & Konber, A. H. (2010). The effect of frame length, fragmentation and RTS/CTS mechanism on IEEE 802.11 MAC performance. In Proceedings of 10th international conference on intelligent systems design and applications (pp. 1338–1344).

  49. Pocta, P., Bilsak, M., & Rousekova, J. (2010). Impact of fragmentation threshold tuning on performance of voice service and background traffic in IEEE 802.11b WLANs. In Proceedings of 20th international conference on radioelektronika (pp. 1–4).

  50. Park, S., Chang, Y., & Copeland, J. A. (2012). Throughput enhancement of MANETs: Packet fragmentation with hidden stations and BERs. In Proceedings of IEEE consumer communications and networking conference (pp. 188-193).

  51. Gardiner, C. (2009). Stochastic methods. Berlin: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohand Yazid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazid, M., Aïssani, D. & Bouallouche-Medjkoune, L. Modeling and Analysis of the TXOPLimit Efficiency with the Packet Fragmentation in an IEEE 802.11e-EDCA Network Under Noise-Related Losses. Wireless Pers Commun 95, 1505–1530 (2017). https://doi.org/10.1007/s11277-016-3863-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3863-y

Keywords

Navigation