Skip to main content
Log in

Changes in Electromyographic Activity of Lumbar Paraspinal Muscles According to Type of Inverted-Spinal-Traction

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We analyzed changes in electromyographic (EMG) activity in the lumbar paraspinal muscles according to Inverted-Spinal-Traction (IST) protocols, and based on the results, identified how the various protocols affected the relaxation of lumbar paraspinal muscles. Sixty healthy adult males participated in this study. They were randomly divided into three groups according to different traction protocols: 30°–30°, 30°–60°, and 60°–60°. IST was performed for 6 min in two phases, with each phase lasting 3 min. The root mean square (RMS) of EMG signals from the left and right lumbar paraspinal muscles was measured during IST, and changes in EMG activity were analyzed by examining the differences between the phases. The greatest difference in the RMS of EMG signals from the left and right lumbar paraspinal muscles during IST occurred between the phases in the 30°–60° group. The RMS of EMG signals from the right L2 and left L4 paraspinal muscles exhibited statistically significant differences between the phases. Although the RMS of EMG signals from the left L2 and right L4 paraspinal muscles did not show statistically significant differences between phases, they did exhibit similar patterns. In this study, the progressive 30°–60° IST protocol was the most effective for relaxing lumbar paraspinal muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haskvitz, E. M., & Hanten, W. P. (1986). Blood pressure response to inversion tractionm. Physical Therapy, 66, 1361–1364.

    Google Scholar 

  2. Pellecchia, G. L. (1994). Lumbar traction: A review of the literature. Journal of Orthopaedic and Sports Physical Therapy, 20(5), 262–267.

    Article  Google Scholar 

  3. Kim, M. S., & Kang, S. M. (2012). The effect analysis on middle-aged women’s facial wrinkles improvement of shaking neck exercise and collagen. Diet J Kor Soc Cosm, 18(6), 1223–1234.

    Google Scholar 

  4. Sheffield, F. J. (1964). Adaptation of table for lumbar traction. Archives of Physical Medicine and Rehabilitation, 45, 469–472.

    Google Scholar 

  5. Raut, A. A., & Bagde, S. T. (2014). Inversion therapy & zero gravity concept: For all back Pain problems. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 1, 18–22.

    Google Scholar 

  6. Prasad, K. S. M., Gregson, B. A., Harfreaves, G., Byrnes, T., Winburn, P., & Mendelow, A. D. (2012). Inversion therapy in patients with pure single level lumbar discogenic disease: A pilot randomized trial. Disability and Rehabilitation, 34(17), 1473–1480.

    Article  Google Scholar 

  7. Nosse, L. J. (1978). Inverted spinal traction. Archives of Physical Medicine and Rehabilitation, 59(8), 367–370.

    Google Scholar 

  8. Vernon, H., Meschino, J., & Naiman, J. (1985). Inversion therapy: A study of physiological effects. The Journal of the Canadian Chiropractic Association, 29(3), 135–140.

    Google Scholar 

  9. Healey, E. L., Fowler, N. E., Burden, A. M., & McEwan, I. M. (2005). The influence of different unloading positions upon stature recovery and paraspinal muscle activity. Clinical Biomechanics (Bristol, Avon), 20(4), 365–371.

    Article  Google Scholar 

  10. Arendt-Nielsen, L., Graven-Nielsen, T., Svarrer, H., & Svensson, P. (1996). The influence of low back pain on muscle activity and coordination during gait: A clinical and experimental study. Pain, 64(2), 231–240.

    Article  Google Scholar 

  11. Graven-Nielsen, T., Svensson, P., & Arendt-Nielsen, L. (1997). Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function. Electroencephalography and Clinical Neurophysiology, 105(2), 156–164.

    Article  Google Scholar 

  12. Kravitz, E., Moore, M. E., & Glaros, A. (1981). Paralumbar muscle activity in chronic low back pain. Archives of Physical Medicine and Rehabilitation, 62(4), 172–176.

    Google Scholar 

  13. Ibarra, J. M., Ge, H. Y., Wang, C., Martinez Vizcaino, V., Graven-Nielsen, T., & Arendt-Nielsen, L. (2011). Latent myofascial trigger points are associated with an increased antagonistic muscle activity during agonist muscle contraction. The Journal of Pain, 12(12), 1282–1288.

    Article  Google Scholar 

  14. van der Hulst, M., Vollenbroek-Hutten, M. M., Rietman, J. S., & Hermens, H. J. (2010). Lumbar and abdominal muscle activity during walking in subjects with chronic low back pain: Support of the “guarding” hypothesis? Journal of Electromyography and Kinesiology, 20(1), 31–38.

    Article  Google Scholar 

  15. Simons, D. G., & Mense, S. (1998). Understanding and measurement of muscle tone as related to clinical muscle pain. Pain, 75(1), 1–17.

    Article  Google Scholar 

  16. Larsson, R., Oberg, P. A., & Larsson, S. E. (1999). Changes of trapezius muscle blood flow and electromyography in chronic neck pain due to trapezius myalgia. Pain, 79(1), 45–50.

    Article  Google Scholar 

  17. Larsson, S. E., Alund, M., Cai, H., & Oberg, P. A. (1994). Chronic pain after soft-tissue injury of the cervical spine: Trapezius muscle blood flow and electromyography at static loads and fatigue. Pain, 57(2), 173–180.

    Article  Google Scholar 

  18. Guevenol, K., Tuzun, C., Peker, O., & Goktay, Y. (2000). A comparison of inverted spinal traction and conventional traction in the treatment of lumbar disc herniations. Physiotherapy Theory and Practice: An International Journal of Physiotherapy, 16(3), 151–160.

    Article  Google Scholar 

  19. Kim, J. D., Oh, H. W., Lee, J. H., Cha, J. Y., Ko, I. G., & Jee, Y. S. (2013). The effect of inversion traction on pain sensation, lumbar flexibility and trunk muscles strength in patients with chronic low back pain. Isokinetics and Exercise Science, 21(3), 237–246.

    Google Scholar 

  20. Cameron, M. H. (2014). Physical agents in rehabilitation: From research to practice(4e). Korea: Elsevier.

    Google Scholar 

  21. Boocock, M. G., Garbutt, G., Reilly, T., Linge, K., & Troup, J. D. G. (1988). The effects of gravity inversion on exercise-induced spinal loading. Ergonomics, 31(11), 1631–1637.

    Article  Google Scholar 

  22. Ballantyne, B. T., Reser, M. D., Lorenz, G. W., & Smidt, G. L. (1986). The effects of inversion traction on spinal column configuration, heart rate, blood pressure, and perceived discomfort. Journal of Orthopaedic and Sports Physical Therapy, 7(5), 254–260.

    Article  Google Scholar 

  23. Kane, M. D., Karl, R. D., & Swain, J. H. (1985). Effects of gravity-facilitated traction on intervertebral dimensions of the lumbar spine. Journal of Orthopaedic and Sports Physical Therapy, 6(5), 281–288.

    Article  Google Scholar 

  24. Prentice, W. E. (2011). Therapeutic modalities in rehabilitation(4e). Korea: McGraw Hill Professional.

    Google Scholar 

  25. Kim, C. Y., & Kang, J. H. (2013). Analysis of electromyographic activities of erect spinae at different height of table during ultrasound therapy work. Journal of The Korean Society of Physical Medicine, 8(3), 289–294.

    Article  Google Scholar 

  26. Colado, J. C., Pablos, C., Chulvi-Medrano, I., Garcia-Masso, X., Flandez, J., & Behm, D. G. (2011). The progression of paraspinal muscle recruitment intensity in localized and global strength training exercises is not based on instability alone. Archives of Physical Medicine and Rehabilitation, 92(11), 1875–1883.

    Article  Google Scholar 

  27. Lim, Y. T. (1998). Analysis of selected trunk muscle activities during a golf swing-preliminary study. The Korean Journal of Physical Education, 37(2), 273–280.

    Google Scholar 

  28. Leinonen, V., Kankaanpaa, M., Airaksinen, O., & Hanninen, O. (2000). Back and hip extensor activities during trunk flexion/extension: Effects of low back pain and rehabilitation. Archives of Physical Medicine and Rehabilitation, 81, 32–37.

    Article  Google Scholar 

  29. Mork, P. J., & Westgaard, R. H. (2009). Back posture and low back muscle activity in female computer workers: A field study. Clinical Biomechanics, 24, 169–175.

    Article  Google Scholar 

  30. Tsai, C. T., Chan, H. L., Tseng, C. C., & Wu, C. P. (2011). Harmonic interference elimination by an active comb filter. Journal of the Chinese Institute of Engineers, 21(5), 605–610.

    Article  Google Scholar 

  31. Wang, L., Zhao, M., Ma, J., Tian, S., Xiang, P., Yao, W., et al. (2014). Effect of combining traction and vibration on back muscles, heart rate and blood pressure. Medical Engineering & Physics, 36(11), 1443–1448.

    Article  Google Scholar 

  32. Petulla, L. R. (1986). Clinical observations with respect to progressive/regressive traction. Journal of Orthopaedic and Sports Physical Therapy, 7(5), 261–263.

    Article  Google Scholar 

  33. Criswell, E. (2011). Cram’s introduction to surface electromyography(2e). Ontario: Jones & Bartlett Publishers.

    Google Scholar 

  34. Mathiassen, S. E., Winkel, J., & Hagg, G. M. (1995). Normalization of surface EMG amplitude from the upper trapezius muscle in ergonomic studies—A review. Journal of Electromyography and Kinesiology, 5(4), 197–226.

    Article  Google Scholar 

  35. Allison, G. T., Marshall, R. N., & Singer, K. P. (1993). EMG signal amplitude normalization technique in stretch-shortening cycle movements. Journal of Electromyography and Kinesiology, 3(4), 236–244.

    Article  Google Scholar 

  36. Lehman, G. J., & McGill, S. M. (1999). The importance of normalization in the interpretation of surface electromyography: A proof of principle. Journal of Manipulative and Physiological Therapeutics, 22(7), 444–446.

    Article  Google Scholar 

  37. Milerad, E., Ericson, M. O., Nisell, R., & Kilbom, A. (1991). An electromyographic study of dental work. Ergonomics, 34(7), 953–962.

    Article  Google Scholar 

  38. Thuresson, M., Ang, B., Linder, J., & Harms-Ringdahl, K. (2005). Mechanical load and EMG activity in the neck induced by different head-worn equipment and neck postures. International Journal of Industrial Ergonomics, 35(1), 13–18.

    Article  Google Scholar 

  39. Acedo, A. A., Luduvice Antunes, A. C., Barros dos Santos, A., Barbosa de Olveira, C., Tavares dos Santos, C., Colonezi, G. L., et al. (2015). Upper trapezius relaxation induced by TENS and interferential current in computer users with chronic nonspecific neck discomfort: An electromyographic analysis. Journal of Back and Musculoskeletal Rehabilitation, 28(1), 19–24.

    Article  Google Scholar 

  40. Silva, A. P. M. C. C., Acedo, A. A., Antunes, A. C. L., dos Santos, M. G., Fukuda, T. Y., Apolinario, A., et al. (2011). Electromyography Analysis of Upper Trapezius Relaxation Induced by Interferential Current in Subjects with Neck Discomfort. J Apple Res, 11(1), 11–19.

    Google Scholar 

  41. Kelencz, C. A., Tarini, V. A. F., & Amorim, C. F. (2011). Trapezius upper portion trigger points treatment purpose in positional release therapy electromyographic analysis. North American Journal of Medical Sciences, 3, 451–455.

    Article  Google Scholar 

  42. Mork, P. J., & Westgaard, R. H. (2006). Low-amplitude trapezius activity in work and leisure and the relation to shoulder and neck pain. Journal of Applied Physiology, 100, 1142–1149.

    Article  Google Scholar 

  43. Law, L. F., Krishnan, C., & Avin, K. (2011). Modeling nonlinear errors in surface electromyography due to baseline noise: A new methodology. Journal of Biomechanics, 44(4), 202–205.

    Google Scholar 

  44. Kailas, A., & Ingram, M. A. (2009). Wireless aspects of telehealth. Wireless Personal Communications, 51, 673–686.

    Article  Google Scholar 

  45. Dinesen, B., & Toft, E. (2009). Telehomecare challenge collaboration among healthcare professionals. Wireless Personal Communications, 51, 711.

    Article  Google Scholar 

  46. Simunic, D., & Djurek, M. (2009). Transdisciplinarity of smart health care: Transmedical evolution. Wireless Personal Communications, 51, 687.

    Article  Google Scholar 

  47. Ravikumar, N., Metcalfe, N. H., Ravikumar, J., & Prasad, R. (2016). Smartphone applications for providing ubiquitous healthcare over cloud with the advent of embeddable implants. Wireless Personal Communications, 86(3), 1439–1446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inhyouk Hyong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Hyong, I. Changes in Electromyographic Activity of Lumbar Paraspinal Muscles According to Type of Inverted-Spinal-Traction. Wireless Pers Commun 93, 35–45 (2017). https://doi.org/10.1007/s11277-016-3881-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3881-9

Keywords

Navigation